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Abstract

This paper studies a catalog competition game: two competing �rms decide at the same

time product characteristics and prices in order to maximize pro�ts. Since Dasgupta and

Maskin (1986) it is known that this one-shot Hotelling game admits an equilibrium in mixed

strategies but nothing is known about its nature. We consider a discrete space of available

product characteristics and continuous pricing and we fully characterize the unique symmetric

equilibrium of the catalog competition game for any possible degree of risk aversion of the

competing �rms. This allows us experimentally test our predictions in both a degenerated

and a genuine mixed strategy elicitation mechanism.
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1 Introduction

Hotelling�s (1929) �rst-location-then-price game is the cornerstone of the literature of product

di¤erentiation. In this celebrated model the product characteristics space is modeled by the means

of a linear city where two competitors set-up their "shops" and where consumers�residences are

assumed to be uniformly distributed. Considering a) that each consumer buys one unit of good

and b) that the choice from which shop to buy this unit of good is made on the basis of proximity

to the consumer�s residence (preferences for product characteristic) and the price that the shop

charges, this model truly captures the interaction between price and product characteristics choices

and, thereafter, the e¤ect of this interaction on the determination of equilibrium outcomes (prices,

degree of product di¤erentiation, �rms pro�ts and social welfare). Hotelling�s (1929) idea to

represent the product�s characteristic space by a linear segment was indeed ingenious since it

captures the basic trade-o¤s that consumers with di¤erent tastes face when they need to choose

between di¤erentiated products.

As far as the timing of these choices is concerned, the Hotelling model (1929) - and most of its

variants - assumes that competitors �rst decide where to set up their "shops" and then, after their

location choices become common knowledge, what price to charge for the product that they sell.

This timing of choices might �t certain cases of �rm competition but it is certainly not relevant

for many others. Consider for, example, the common case of two �rms which simultaneously have

to reveal their new products in a certain exhibition: �rms simultaneously announce both product

characteristics and prices. In fact, competition in oligopolistic industries such as car or smart-

phones industries takes place clearly in this simultaneous form. Hence, Hotelling�s (1929) "timing

assumptions" seem to exhibit a poor �t with real world oligopolistic competition.

The idea that simultaneous choice of product characteristics and price might better describe

real world oligopolistic competition than the �rst-location-then-price game of Hotelling (1929) is

present in the literature for a long time and is by no means ours. In fact it is �rst encountered

in Lerner and Singer (1937) critique of Hotelling�s (1929) work. They, speci�cally argue that

player/�rm B should "take both A�s location and his price as �xed in choosing his own location
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and price." Dasgupta and Maskin (1986) and Economides (1984, 1987), many years later, discuss

and describe some properties of this more intuitive simultaneous model of product di¤erentiation.

Following Monteiro and Page (2008) and Fleckinger and Lafay (2010) we use the term catalog

competition to distinguish this game from the two-stage Hotelling (1929) model.

A catalog consists of a product characteristic and of a price and, hence, in the framework of

the linear city model it is just a pair of a shop location and of the price that it charges. It is easy

to show that such a catalog game admits no equilibria in pure strategies when each consumer is

assumed to always buy exactly one unit of good. Dasgupta and Maskin (1986), however, were the

�rst to provide formal conditions which ensure that this catalog game has an equilibrium in mixed

strategies. Monteiro and Page (2008), moreover, proved that a large family of catalog games admits

equilibria in mixed strategies and characterized a family of such catalog games which includes the

one-shot variation of the Hotelling game that this paper studies.

Despite the fact that we already have these existence proofs, we know nothing regarding the

nature of equilibria of catalog competition games. This is because characterizing a mixed equilib-

rium in a catalog game is not a straightforward task: a mixed strategy in this framework involves

a probability distribution with a multidimensional support. That is, unlike the price subgames of

the two-stage Hotelling game (Osborne and Pitchik, 1987), the all-pay auctions (Baye et al., 1996),

Downsian competition with a favored candidate (Aragonès and Palfrey, 2002) or other games which

admit equilibria only in mixed strategies whose underlying probability distributions have unidi-

mensional support (the support of these mixed strategies is a subset of R), the equilibrium of a

catalog game involves mixed strategies with two-dimensional support (their support is a subset of

R2). This additional dimension, obviously, complicates matters in several degrees of magnitude

and makes any characterization attempt intractable when considering the model in its general

form.

This paper attempts to shed light on the nature of equilibria of catalog games by considering

a variation of the model with a discrete set of locations (available product characteristics) and

continuous pricing. Discretization of elements of continuous games in order for a mixed equilibrium

to be identi�ed is not uncommon in spatial competition literature (see, for example, Aragonès and
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Palfrey 2002 and Hummel, 2010). That is, we consider that two �rms compete in catalogs (locations

and prices at the same time) but, compared to the standard setup in which �rms locate at a point

in the unit interval we focus on a case in which �rms can locate to the western, to the central or to

the eastern district of the linear city. We have to stress here, though, that despite the fact that the

set of locations in our setup is �nite, the set of available prices is not. Therefore, since the strategy

space of each �rm is the Cartesian product of these two sets, we have that the strategy space of

each �rm is in�nite. This, along with the facts that the game is not a constant-sum game and

that �rms�payo¤ functions exhibit discontinuities, implies that existence of a unique symmetric

equilibrium and, thereafter, possibility of full characterization are not guaranteed by any known

theorem.

We are able to fully characterize an equilibrium and to, moreover, prove that it is the unique

symmetric equilibrium of the game. Given that this equilibrium is in mixed strategies it is necessary

that we have in mind that its nature depends on the exact level of competitors risk-aversion. We

are able to characterize this mixed equilibrium considering that a �rm�s payo¤ function is any

increasing function of her pro�ts. That is, we can study how equilibrium strategies change when the

risk-aversion level of the competitors varies. We �nd that certain of its qualitative characteristics

are robust in variations of the risk attitudes of the two competitors. The location which is more

probable for a �rm to locate at is the central, the prices that �rms charge are never close to zero

and the price that a �rms which locates at the periphery of the city (that is, at the western or at

the eastern district) charges is larger, in expected terms, than the price of a centrally located �rm.

The existence and full characterization of a unique equilibrium in mixed strategies for any

possible degree of risk aversion of the two competitors allows us conduct an experiment which

can credibly test the hypothesis that actual agents behave according to a mixed equilibrium the-

oretical prediction. In most non-trivial symmetric games with only mixed equilibria (or with only

mixed symmetric equilibria) the underlying probability distributions of the mixed strategies are

almost always computed under the assumption that agents are risk-neutral. Examples of such

experimental studies are Arad and Rubinstein (2012), Collins and Sherstyuk (2000) and Aragonès

and Palfrey (2004). In particular, Collins and Sherstyuk (2000) experimentally study a three �rm
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location model in the unit interval with �xed prices and attribute the divergence between the the-

oretical predictions1 - location of a risk neutral �rm is a random draw from a uniform distribution

with support [1
4
; 3
4
] - and experimental evidence - location choices result in a bimodal distribution

- to the fact that agents are risk-averse. They computationally get some approximate equilibria

for a case of risk neutral agents and show that these approximate equilibrium predictions �t the

data better than the Nash equilibrium of the risk-neutral scenario. Our results provide a unique

opportunity of testing whether agents use Nash equilibrium strategies in a game with only mixed

equilibria.......

2 The model

We analyze a two-�rm competition model in which �rms simultaneously decide a product char-

acteristic (location) and a price. Formally, each �rm i 2 fA;Bg chooses a catalog ci = (li; pi) 2

fW;C;Eg � [0; 1] where fW;C;Eg � R is our discrete linear city (W stands for the western dis-

trict, C stands for the central district and E for the eastern district). For analytical tractability,

we assume that W = �E, C = 0 and E > 1.

[Insert Figure 1 about here]

We also assume that there exists a unit mass of consumers whose residences are uniformly

distributed on the linear city. Formally, we consider that a consumer j 2 [0; 1] resides at h(j) 2

fW;C;Eg and, without loss of generality that h(j) � h(j0) for every j < j0. Each consumer buys

exactly one unit of good from only one of the two �rms. Considering that the utility of a consumer

j 2 [0; 1] with a residence at h(j) 2 fW;C;Eg from a certain catalog c = (l; p) is given by

Uj(c) = �p� jl � h(j)j
1See Shaked (1979).
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we assume that this consumer buys the unit of good from �rm A if Uj(cA) > Uj(cB), from �rm

B if Uj(cA) < Uj(cB) and with probability 1
2
from each of the two �rms if Uj(cA) = Uj(cB). We

moreover de�ne

IA(cA; cB) = fj 2 [0; 1]jUj(cA) > Uj(cB)g

and

IB(cA; cB) = fj 2 [0; 1]jUj(cA) < Uj(cB)g.

Then, the pro�ts of the two �rms as functions of their catalogs are given by

�A(cA; cB) = pA � [�(IA(cA; cB)) + 1��(IA(cA;cB))��(IB(cA;cB))
2

]

and

�B(cA; cB) = pB � [�(IB(cA; cB)) + 1��(IA(cA;cB))��(IB(cA;cB))
2

]

where �(S) is the Lebesgue measure of the set S � R. Hence, like Osborne and Pitchik (1987)

and many other relevant models we assume zero marginal costs of production.

We consider that each �rm i 2 fA;Bg maximizes v(�i(cA; cB)) where v : R! R is any strictly

increasing and absolutely continuous function; without loss of generality we normalize v(0) = 0.

This very general structure of �rms preferences allows us to characterize an equilibrium for any

kind of a �rm�s risk preferences.

A mixed strategy pro�le in this set up is denoted by (�A; �B) where for each i 2 fA;Bg,

�i = (F
W
i (p); F

C
i (p); F

E
i (p)). For each i 2 fA;Bg and each l 2 fW;C;Eg, F li (p) is the probability

that the catalog ci = (li; pi) of �rm i 2 fA;Bg is such that li = l and pi � p. A Nash equilibrium
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in mixed strategies is a mixed strategy pro�le (�̂A; �̂B) such that �̂B (�̂A) is a best response of

�rm B (A) to �rm A (B) playing �̂A (�̂B).

Before we advance to the characterization results some comments regarding the employed

assumptions are in order. The fact that pi 2 [0; 1] simply captures the fact that a reservation

price exists or a government imposed threshold on the product�s price in the spirit of Osborne

and Pithcik (1987); obviously, the selection of a reservation price equal to one is without loss of

generality. On the other hand the assumption E > 1 has certain implications on the analysis which

is about to follow. This assumption essentially mitigates the intensity of competition between two

�rms who locate to distinct districts without eliminating it as the assumptions of Economides

(1984, 1987) do.2 Our assumption implies that if the two �rms locate at di¤erent districts then

each of them will get the consumers of the district she has located in independently of the price

choices that they made. But this does not eliminate incentives to compete. If one �rm locates

at W and the other at E then the consumers who are located at C will buy the product from

the �rm which o¤ers two lowest price: price competition has a signi�cant intensity. That is,

our model may be indeed a rough approximation of a general catalog competition model with a

large product characteristics space but, unlike Economides (1984, 1987), it fairly well captures

the dynamics that are generated by the simultaneous choice of location and price. Since local-

monopolies equilibria are not possible in our setting, the equilibrium outcomes should provide

novel insights regarding the nature of oligopolistic competition. If one assumes that E < 1 then,

indeed, price competition would be even more intense. It very important to note here though that

our equilibrium is robust to considering values of E < 1 as long as they are not very small. But

if we let E take any arbitrarily small value then a) the intensity of price competition will lead

equilibrium prices near zero, b) derivation of complete analytical results would become intractable

and c) the dynamics which form the qualitative features of our equilibrium would not alter in any

substantial way. Hence, we work with this assumption acknowledging its limitations but, at the

same time, insisting that it generates qualitatively insigni�cant losses in generality.

2Economides (1984, 1987) considers that consumers have a very low valuation of the good - only the consumers
located very near a "shop" will buy the good - and, hence, pure strategy equilibria in the catalog game exist
such that each �rm is a local monopolist. In our case this can never occur as price competition is intense at a
non-degenerate degree.
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3 Formal results

The game clearly does not admit any pure strategy equilibrium. If an equilibrium existed in

which both �rms charged the same positive price, then this should be a minimum di¤erentiation

equilibrium (since in all other cases each �rm would have incentives to approach the other and

marginally undercut the price). But if in a minimum di¤erentiation equilibrium �rms charge the

same price then each �rm has incentives to marginally undercut the other and double her pro�t.

If in equilibrium �rms charge di¤erent prices then the low price �rm has incentives to locate at

the same location with the high price �rm and take all the market and the high price �rm has

incentives to go far away from the low price �rm - such an equilibrium cannot exist. Finally, it

cannot be the case that both �rms choose in equilibrium prices equal to zero. In such a case one of

these �rms could get positive pro�ts by moving away from the other �rm and charging a positive

price.

In order to improve the way our formal results are presented let us �rst give a couple of useful

de�nitions.

De�nition 1 We say that (�̂A; �̂B) is a symmetric equilibrium if (i) �̂A = �̂B and (ii) F̂WA (p) =

F̂EA (p) for every p 2 [0; 1].

That is, symmetry in our analysis means both that the two �rms employ the same strategy -

the standard game-theoretic meaning of the term - and that each �rms uses a mixed strategy which

is symmetric about the center of the linear city - this notion of symmetry is used in unidimensional

spatial models with mixed equilibria (see, for example, Aragonès and Palfrey, 2002).

De�nition 2 Consider that (�̂A; �̂B) is a symmetric equilibrium. Then q = F̂WA (1), G(p) =
F̂WA (p)

F̂WA (1)

and Z(p) = F̂CA (p)

F̂CA (1)
.

A mixed strategy �i = (FWi (p); F
C
i (p); F

E
i (p)) in our setup is bidimensional. The above de�-

nition simply de�nes conditional probability distributions which will help us present our result in
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a more intuitive manner. First, q is the probability that a �rm locates at the western (eastern)

district; obviously, 1�2q is the probability that a �rm locates at the central district. Then G(p) is

the probability distribution of the price of a �rm conditional that this �rm locates in the western

(eastern) district. Finally, Z(p) is the probability distribution of the price of a �rm conditional

that this �rm locates in the central district.

We can now state our main result.

Proposition 1 There exists a unique symmetric equilibrium (�̂A; �̂B) which is such that

(i) F̂WA (p) =

8>>>>><>>>>>:
0 if p 2 [0; p0)
v( 1
3
)(1� 2v( 23 )(v(

1
3 )�v(

p
3 ))

v( 13 )(�v(
p
3 )+v(

2p
3 )+v(p))

)

v( 1
3
)+2v( 2

3
)

if p 2 [p0; 1]
v( 1
3
)

v( 1
3
)+2v( 2

3
)

if p > 1

(ii) F̂CA (p) =

8>>>><>>>>:
0 if p 2 [0; p00)
2v( 1

3
)�v( 2

3
)+v( 2p

3
)�(v( 13 )�2v(

2
3
))v(p)

(v( 13 )+2v(
2
3
))v(p)

if p 2 [p00; 1]

1� 2 v( 1
3
)

v( 1
3
)+2v( 2

3
)

if p > 1

and

(iii) 0 < p00 < p0 < 1

where p0 2 (0; 1) is the unique solution of v(1
3
)(�v(p0

3
) + v(2p

0

3
) + v(p0)) = 2v(2

3
)(v(1

3
) � v(p0

3
))

and p00 2 (0; 1) is the unique solution of 2v(1
3
)� v(2

3
) + v(2p

00

3
) =

�
v(1
3
)� 2v(2

3
)
�
v(p00).

Proof. Assume that a symmetric equilibrium (�̂A; �̂B) exists and denote by S � fW;C;Eg� [0; 1]

the support of its underlying probability distribution. We will �rst show that a) (�̂A; �̂B) is atomless

and that b) S has no gaps. By S having no gaps we mean that if for some l 2 fW;C;Eg two

distinct catalogs (l; _p) and (l; �p) belong to S then F lA( _p) 6= F lA(�p). The reason why any symmetric

equilibrium is atomless is straightforward. Assume the contrary, that is, that there exists a mass
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point on catalog (W; _p) 2 S: �rm B expects that �rm A will choose catalog (W; _p) 2 S with

probability FWA ( _p) � limp! _p� F
W
A (p) > 0. First of all, it is trivial to see why this can never be

the case for a catalog (W; _p) with _p = 0. If such a catalog is part of S then, in this symmetric

equilibrium, the expected payo¤ of each �rm is zero. But in this game can always secure positive

expected payo¤s if, for example, she mixes uniformly among (W; 1), (C; 1) and (E; 1). Therefore

if there exists a mas point at (W; _p) it must be such that _p > 0. If �rm B chooses (W; _p) 2 S her

payo¤ will be

[FWA ( _p)� limp! _p� F
W
A (p)]v(

_p
2
) + [FWA (1)� FWA ( _p)]v( _p) + FCA (1)v( _p3)+

+[FWA ( _p)� limp! _p� F
W
A (p)]v(

_p
2
) + [FWA (1)� FWA ( _p)]v(2 _p3 ) + [limp! _p� F

W
A (p)]v(

_p
3
)

and if B chooses (W; _p� ") her payo¤ will be

[FWA ( _p� ")� limp! _p�"� F
W
A (p)]v(

_p�"
2
) + [FWA (1)� FWA ( _p� ")]v( _p� ") + FCA (1)v( _p�"3 )+

+[FWA ( _p�")�limp! _p�"� F
W
A (p)]v(

_p�"
2
)+[FWA (1)�FWA ( _p�")]v(

2( _p�")
3
)+[limp! _p�"� F

W
A (p)]v(

_p
3
).

We can obviously �nd " > 0 arbitrary small such that the considered mixed strategy has no

mass at (W; _p� "). Therefore, when B chooses (W; _p� ") and "! 0 her expected payo¤ becomes

[FWA (1)�limp! _p� F
W
A (p)]v( _p)+F

C
A (1)v(

_p
3
)+[FWA (1)�limp! _p� F

W
A (p)]v(

2 _p
3
)+[limp! _p�"� F

W
A (p)]v(

_p
3
)

which is strictly larger than her payo¤at (W; _p). That is, (W; _p) cannot belong in the support of

a mixed strategy which characterizes a symmetric equilibrium because �rms prefer other catalogs

to that. This suggests that our assumption - that the symmetric equilibrium might be such that

there exists a mass point on a certain catalog (W; _p) - is wrong. An argument which rules out

existence of a mass point at a catalog (E; _p) is symmetric to the one that we just developed

an argument which rules out existence of a mass point at a catalog (C; _p) is very similar to the

present one. This concludes the proof that if a symmetric equilibrium exists then the underlying

probability distribution has no atoms.

We now turn attention to our second claim: if a symmetric equilibrium exists then it has no

gaps. Again assume the contrary. Consider that we have a gap and, hence, there exist two distinct
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catalogs (W; _p) and (W; �p) which belong to S and which are such that _p < �p and FWA ( _p) = F
W
A (�p).

Then, given that this symmetric equilibrium is atomless, if B chooses (W; _p) her payo¤ will be

[FWA (1)� FWA ( _p)]v( _p) + FCA (1)v( _p3) + [F
W
A (1)� FWA ( _p)]v(2 _p3 ) + F

W
A ( _p)v(

_p
3
)

while if she chooses (W; �p) her payo¤ will be

[FWA (1)� FWA (�p)]v(�p) + FCA (1)v( �p3) + [F
W
A (1)� FWA (�p)]v(2�p3 ) + F

W
A (�p)v(

�p
3
).

Since, FWA ( _p) = F
W
A (�p) it trivially follows that B�s payo¤ at (W; �p) is strictly larger than her

payo¤ at (W; _p). Therefore, (W; _p) cannot be part of the support of a symmetric equilibrium

mixed strategy. Arguments which rule out existence of gaps in FCA (p) and in F
E
A (p) are very

similar. Hence, if a symmetric equilibrium exists it must have no gaps.

Knowing that if a symmetric equilibrium exists it is an atomless equilibrium with no gaps is

very useful for our characterization attempt. Notice that the above arguments moreover establish

that (W; 1), (C; 1) and (E; 1) are all part of S. Hence, in a symmetric equilibrium the expected

payo¤, v�, of each of the �rms should coincide with the payo¤ of �rm B when �rm A is expected

to play the equilibrium mixed strategy and �rm B to choose (W; 1) or to choose (C; 1). In the �rst

case (when B plays (W; 1)) the equilibrium payo¤, v�, can be shown to be equal to

FCA (1)v(
1
3
) + FWA (1)v(

1
3
) = [1� FWA (1)]v(13)

and in the second case (when B plays (C; 1)) the equilibrium payo¤, v�, can be shown to be

equal to

2FWA (1)v(
2
3
).

Therefore in a symmetric equilibrium we must have FWA (1) =
v( 1
3
)

v( 1
3
)+2v( 2

3
)
, FCA (1) = 1�2

v( 1
3
)

v( 1
3
)+2v( 2

3
)

and v� = 2v( 1
3
)v( 2

3
)

v( 1
3
)+2v( 2

3
)
.

Since S has no gaps and since there are no mass points involved, if �rm B chooses (W; p) 2 S

it must be the case that

[
v( 1
3
)

v( 1
3
)+2v( 2

3
)
� FWA (p)]v(p) + [1 � 2

v( 1
3
)

v( 1
3
)+2v( 2

3
)
]v(p

3
) + [

v( 1
3
)

v( 1
3
)+2v( 2

3
)
� FWA (p)]v(2p3 ) + F

W
A (p)v(

p
3
) =
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2v( 1
3
)v( 2

3
)

v( 1
3
)+2v( 2

3
)

which is equivalent to

FWA (p) =
v( 1
3
)(1� 2v( 23 )(v(

1
3 )�v(

p
3 ))

v( 13 )(�v(
p
3 )+v(

2p
3 )+v(p))

)

v( 1
3
)+2v( 2

3
)

.

We notice that FWA (p) � 0 if and only if p � p0 where p0 2 (0; 1) is the unique solution of

v(1
3
)(�v(p0

3
) + v(2p

0

3
) + v(p0)) = 2v(2

3
)(v(1

3
)� v(p0

3
)).

Moreover, if �rm B chooses (C; p) 2 S it must be the case that

2
v( 1
3
)

v( 1
3
)+2v( 2

3
)
v(2p

3
) + [(1� 2 v( 1

3
)

v( 1
3
)+2v( 2

3
)
)� FCA (p)]v(p3) =

2v( 1
3
)v( 2

3
)

v( 1
3
)+2v( 2

3
)

which is equivalent to

FCA (p) =
2v( 1

3
)�v( 2

3
)+v( 2p

3
)�(v( 13 )�2v(

2
3
))v(p)

(v( 13 )+2v(
2
3
))v(p)

.

We notice that FCA (p) � 0 if and only if p � p00 where p00 2 (0; 1) is the unique solution of

2v(1
3
)� v(2

3
) + v(2p

00

3
) =

�
v(1
3
)� 2v(2

3
)
�
v(p00).

So, there exists a unique candidate for a symmetric equilibrium given by (�̂A; �̂B) which is such

that

(i) F̂WA (p) =

8>>>>><>>>>>:
0 if p 2 [0; p0)
v( 1
3
)(1� 2v( 23 )(v(

1
3 )�v(

p
3 ))

v( 13 )(�v(
p
3 )+v(

2p
3 )+v(p))

)

v( 1
3
)+2v( 2

3
)

if p 2 [p0; 1]
v( 1
3
)

v( 1
3
)+2v( 2

3
)

if p > 1

(ii) F̂CA (p) =

8>>>><>>>>:
0 if p 2 [0; p00)
2v( 1

3
)�v( 2

3
)+v( 2p

3
)�(v( 13 )�2v(

2
3
))v(p)

(v( 13 )+2v(
2
3
))v(p)

if p 2 [p00; 1]

1� 2 v( 1
3
)

v( 1
3
)+2v( 2

3
)

if p > 1

and

(iii) 0 < p00 < p0 < 1

where p0 2 (0; 1) is the unique solution of v(1
3
)(�v(p0

3
) + v(2p

0

3
) + v(p0)) = 2v(2

3
)(v(1

3
) � v(p0

3
))
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and p00 2 (0; 1) is the unique solution of 2v(1
3
)� v(2

3
) + v(2p

00

3
) =

�
v(1
3
)� 2v(2

3
)
�
v(p00).

To verify that indeed this symmetric strategy pro�le is a Nash equilibrium we trivially compute

the expected payo¤ of a �rm which chooses (l; p) when the other �rm is expected to play according

to the speci�ed mixed strategy and we get that if (l; p) belongs to the support of the speci�ed

mixed strategy the �rms expected payo¤ is 2v( 1
3
)v( 2

3
)

v( 1
3
)+2v( 2

3
)
and if (l; p) does not belong to the support

of the speci�ed mixed strategy the expected payo¤ of the �rm is strictly smaller than 2v( 1
3
)v( 2

3
)

v( 1
3
)+2v( 2

3
)
.

Hence, a best response of a �rm which expects that her competitor will behave according to the

speci�ed mixed strategy is to employ the same mixed strategy. This concludes the existence and

uniqueness proof.

Notice that in this unique symmetric equilibrium we have q < 1
3
and, hence, a �rm locates to

the central district with a probability strictly larger than 1
3
and it locates to each of the peripheral

districts with a probability strictly smaller than 1
3
. This is a very strong result as it holds for any

reasonable risk attitude on behalf of the �rms.

To better understand the nature of this unique symmetric equilibrium let us use a speci�c

functional form of �rms risk preferences and assume that

v(x) =

8<: 1�e�ax
1�e�a if a 6= 0

x if a = 0
:

That is v(x) exhibits constant absolute risk aversion (CARA), its risk aversion parameter is

a 2 R (if a > 0 the �rm is risk averse, if a = 0 the �rm is risk neutral and if a < 0 the �rm is risk

lover), it is continuous for every x 2 [0; 1] and every a 2 R and v(0) = 1 and v(1) = 1 for every

a 2 R.

Given this, our unique symmetric equilibrium (�̂A; �̂B) becomes such that

13



F̂WA (p) =

8>>>>>><>>>>>>:

0 if p 2 [0; p0)

�
e�a=3

 
e2a=3�2eap�2ea(

1
3+p)�ea(

2
3+p)+e

2
3a(1+p)+e

1
3a(2+p)+2e

1
3 (a+2ap)

!
(2+3ea=3)

�
�1+e

ap
3

��
1+e

ap
3

�2 if p 2 [p0; 1]

1
3+2e�a=3

if p > 1

and

F̂CA (p) =

8>>>>><>>>>>:
0 if p 2 [0; p00)
e�a=3

 
�2ea=3�e2a=3+2eap+2ea(

1
3+p)+ea(

2
3+p)�2e

1
3a(2+p)

!
(2+3ea=3)(�1+eap)

if p 2 [p00; 1]

1� 2
3+2e�a=3

if p > 1

for 0 < p00 < p0 < 1 which satisfy F̂WA (p
0) = 0 and F̂CA (p

00) = 0 (their exact closed form solutions

are enormous).

In particular for the case of risk neutral �rms, that is for v(x) = x, our equilibrium signi�cantly

simpli�es to

F̂WA (p) =

8>>><>>>:
0 if p 2 [0; 1

2
)

2
5
� 1

5p
if p 2 [1

2
; 1]

1
5

if p > 1

and

F̂CA (p) =

8>>><>>>:
0 if p 2 [0; 4

13
)

13
15
� 4

15p
if p 2 [ 4

13
; 1]

3
5

if p > 1

.

In Table 1 we present some brief information for our equilibrium for various values of the risk

parameter a 2 R.
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a p0 p00 q

�10 0:677 0:338 0:016931

�1 0:54 0:32 0:172675

0 0:5 0:307 0:2

1 0:46 0:29 0:225578

10 0:176 0:136 0:32559

Table 1. Equilibrium features for various levels of risk aversion.

Moreover in Figure 2 we present the evolution of the densities of the conditional price distrib-

utions, G0(p) and Z 0(p), for the same example values of risk aversion as in Table 1.

[Insert Figure 2 about here]

In the Appendix we characterize symmetric equilibria of a four locations version of our model

and we show that it exhibits the same qualitative features with the equilibrium of the three locations

case that we presented here. We also present the equilibrium of a trivial modi�cation of our three

location game such that prices range from 0 to 1000 (this will be useful for our experiment).
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4 Appendix

4.1 Four Locations

For the case of four locations fW;CW;CE;Eg we assume that jW � CW j = jCW � CEj =

jCE � Ej > 1 and everything else is identical to the three location model.

In this case we say that (�̂A; �̂B) is a symmetric equilibrium if (i) �̂A = �̂B and (ii) F̂WA (p) =

F̂EA (p) and F̂
CW
A (p) = F̂CEA (p)for every p 2 [0; 1].

When v(x) =

8<: 1�e�ax
1�e�a if a 6= 0

x if a = 0
and a � 0 the unique symmetric equilibrium takes the form:

F̂WA (p) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

0 if p 2 [0; p0)

e�
1
8
a(5+7p) csch (a

8
)[ ea=2�e3a=4+eap+e

5ap
4 +e

7ap
4 +2e

a( 14+p)
41�2e�a=4+3 coth(a

8
)(sinh( 3ap8 )+sinh( 5ap

8
)+sinh( 7ap

8
))
+

++e
a( 12+p)�ea(

3
4+p)+2e

1
2a(1+p)�2e

3
4a(1+p)+e

1
4a(2+p)�e

1
4a(3+p)

41�2e�a=4+3 coth(a
8
)(sinh( 3ap8 )+sinh( 5ap

8
)+sinh( 7ap

8
))

+

+�2e
1
4a(3+2p)�2e

1
4a(2+3p)�2e

1
4a(3+5p)+e

1
4a(2+7p)+e

1
4a(3+7p)�e

3
4 (a+2ap)

41�2e�a=4+3 coth(a
8
)(sinh( 3ap8 )+sinh( 5ap

8
)+sinh( 7ap

8
))

+

+�2e
1
4 (a+3ap)�e

1
2 (a+3ap)+e

1
4 (a+5ap)�e

1
4 (a+6ap)+3e

1
4 (a+7ap)

41�2e�a=4+3 coth(a
8
)(sinh( 3ap8 )+sinh( 5ap

8
)+sinh( 7ap

8
))
]

if p 2 [p0; 1]

1
1�2e�a=4+3 coth(a

8
)

if p > 1

and

F̂CWA (p) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

0 if p 2 [0; p00)

e�
1
8
a(4+7p)( (�ea=4�ea=2�e3a=4+eap+e

3ap
2 +e

7ap
4 +3e

a( 14+p)

4(3 cosh(a4 )+sinh(
a
4
))(sinh( 3ap8 )+sinh( 5ap

8
)+sinh( 7ap

8
))
+

++3e
a( 12+p)�ea(

3
4+p)�e

1
4a(1+p)�2e

3
4a(1+p)�2e

1
4a(3+p)�4e

1
4a(3+2p)

4(3 cosh(a4 )+sinh(
a
4
))(sinh( 3ap8 )+sinh( 5ap

8
)+sinh( 7ap

8
))

+

+�e
1
4a(2+5p)�e

1
4a(3+5p)+e

1
4a(2+7p)+e

1
4a(3+7p)�2e

1
4 (a+2ap)+e

3
4 (a+2ap)

4(3 cosh(a4 )+sinh(
a
4
))(sinh( 3ap8 )+sinh( 5ap

8
)+sinh( 7ap

8
))

+

+�e
1
4 (a+3ap)+e

1
2 (a+3ap)�e

1
4 (a+5ap)+3e

1
4 (a+6ap)+3e

1
4 (a+7ap)

4(3 cosh(a4 )+sinh(
a
4
))(sinh( 3ap8 )+sinh( 5ap

8
)+sinh( 7ap

8
))
)

if p 2 [p00; 1000]

1
2
� 1
1�2e�a=4+3 coth(a

8
)

if p > 1000
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for 0 < p0 < p00 < 1 which satisfy F̂CWA (p0) = 0 and F̂CA (p
00) = 0.

In particular for the case of risk neutral �rms (a = 0), that is for v(x) = x, our equilibrium

signi�cantly simpli�es to

F̂WA (p) = 0 for every p 2 [0; 1]

and

F̂WC
A (p) =

8>>><>>>:
0 if p 2 [0; 2

7
)

7
10
� 1

5p
if p 2 [2

7
; 1]

1
2

if p > 1

.

When a(0 the unique symmetric equilibrium takes the form:

F̂WA (p) = 0 for every p 2 [0; 1]

and

F̂CWA (p) =

8>>><>>>:
0 if p 2 [0; p00)
�1+ea(�

1
2+p)�e

ap
2 +eap

2(�1+eap) if p 2 [p00; 1]
1
2

if p > 1

for p00 such that F̂CWA (p00) = 0.

4.2 Price between 0 and 1000

We now consider that a) in each location there are exactly 10 consumers, b) prices can take

values from 0 to 1000, c) distance between districts is properly scaled up to have the same degree

of price competition intention as in the case analyzed in the formal part of the paper and d)

v(x) =

8<: 1�e�a
x

30000

1�e�a if a 6= 0
x

30000
if a = 0

: Therefore our unique symmetric equilibrium takes the form:
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F̂WA (p) =

8>>>>>><>>>>>>:

0 if p 2 [0; p0)
ea=3

 
�1�e

ap
3000�e

ap
1500+e

ap
1000+2

 
e
a(� 2

3+
p

1000)+ea(�
1
3+

p
1000)�e

a(�500+p)
1500

!!
(2+3ea=3)

�
�1+e

ap
3000

��
1+e

ap
3000

�2 if p 2 [p0; 1000]

1
3+2e�a=3

if p > 1000

and

F̂CA (p) =

8>>>>>><>>>>>>:

0 if p 2 [0; p00)
e�a=3

 
�2ea=3�e2a=3+2ea(

1
3+

p
1000)+ea(

2
3+

p
1000)+2e

ap
1000�2e

a(2000+p)
3000

!
(2+3ea=3)

�
�1+e

ap
1000

� if p 2 [p00; 1000]

1� 2
3+2e�a=3

if p > 1000

for 0 < p0 < p00 < 1000 which satisfy F̂WA (p
0) = 0 and F̂CA (p

00) = 0.

In particular for the case of risk neutral �rms, that is for v(x) = x
30000

, our equilibrium signi�-

cantly simpli�es to

F̂WA (p) =

8>>><>>>:
0 if p 2 [0; 500)
2
5
� 200

p
if p 2 [500; 1]

1
5

if p > 1000

and

F̂CA (p) =

8>>><>>>:
0 if p 2 [0; 4000

13
)

13
15
� 800

3p
if p 2 [4000

13
; 1]

3
5

if p > 1000

.

In Table 2 we present some brief information for our equilibrium for various values of the risk

parameter a.
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a p0 p00 q

�10 677 338 0:016931

�1 540 320 0:172675

0 500 307 0:2

1 460 290 0:225578

10 176 136 0:32559
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