

Gamification Quest: *

Design and Development of a gamification game

Luis Alisandra Senabre

Advisor: Dr. Raúl Montoliu Colás

Department of Engineering

Universitat Jaume I de Castellón

This dissertation is submitted for the bachelor’s degree in Video Game Design and Development

Castellón de la Plana July 2017

Gamification Quest: *

2

3

Abstract

Nowadays video games are taking a more active role in our society. A field in which they

have not yet highlighted but have great potential is in the education system.

In this document, Gamification Quest: * is presented. It forms part of a bigger educational

project named Gamification Quest which pretends to join the education system with video

games, in order to motivate the students and make them improve their academic performance.

Gamification Quest: * (GQ*) assumes the playable part of the project as an RPG video game.

The intended target goes from high school to college students, in other words, people from

14 to 24 years which are in high school or college. Gamification Quest is a more complex

education application but GQ* focuses on presenting a mechanics and a game system that uses

the student's notes and deliveries, collected by the GQ application. Motivating him to improve

his academic performance in order to progress in the game.

The development will target the Android platform which is the most extended one among

smartphones and Unity3D is used as the game engine for the implementation of the game.

The core of the GQ* project is the Artificial Intelligence Techniques (AIT) that controls the

Non-Playable Characters (NPC). They are implemented using the minimal Unity tools and

focusing on their implementation from scratch. The techniques implemented are Steering

Behaviors for characters’ movement and Behaviors trees for controlling their actions and

allowing them to respond in real-time to the player’s actions.

Key Words:

Gamification, Artificial Intelligence, Game mechanics,

 Squad's coordination, RPG, Behavior Trees

Gamification Quest: *

4

5

List of Contents

List of Contents ..5

List of Tables ..8

List of Figures ...9

Chapter 1 Technical Proposal ..10

1.1 Motivation..10

1.2 State of the Art ...10

Gamification ...10

RPG Games ...11

AI Techniques ...11

1.3 Game Overview ..11

1.4 Objectives ..12

1.5 Justification ..13

1.6 Tools ...13

Programming ...13

3D Art ...13

2D Art ...13

Documentation ..14

1.7 Project Plan ..14

Section 1 –Design (D) ...14

Section 2 –Implementation (I) ..14

Section 3 –Art (A) ...15

Section 4 – Documentation (Doc) ..16

1.8 Risk Management ..17

Chapter 2 Gamification Context ...19

Chapter 3 Game Design Document ..20

3.1 Characters ..20

Avatar ...20

Familiars ...20

Enemies ..21

3.2 Game mechanics ..21

Avatar ...21

Familiars ...22

Gamification Quest: *

6

Formations ...22

Dungeons ...23

Enemies ..23

Levelling Up ..23

Unlock new Dungeons ...24

Getting new familiars ...24

3.3 Player Controls ...24

3.4 Gameplay ...24

3.5 Game Visual Design ..25

3.6 Game Music & Sound Design ...25

Chapter 4 Project Development ..26

4.1 Game User Interface (I21) ..26

4.2 General Information Classes ..27

4.3 Game Characters(I1) ..28

GameObjects & Components ...28

Scripts ..28

4.4 Testing & Debugging ..31

Chapter 5 AI Techniques ...32

5.1 Steering Behaviors ...32

5.2 Behavior Trees ...34

Enemy behavior Tree ...38

Boss behavior Tree ...39

Familiar Behavior Trees ..40

5.3 Actions & Action Manager ...42

5.4 Blackboard ...46

5.5 Putting all together ..46

5.6 Testing & Debugging ..47

Chapter 6 Game Art ..48

6.1 Visual Identity ..48

6.2 2D Elements ...49

6.3 Characters ..49

5.4 Environment (I2): ...51

Chapter 7 Results ..53

6.1 Technical Proposal ...53

6.2 Game Document Design...53

7

6.3 Technical Report ..53

6.4 Gamification Quest: * ..53

6.5 Project Exhibition Video ...55

6.6 Project Defense Presentation...55

Chapter 8 Conclusions ...56

Project Objectives ..56

Project Deviation..57

Project Risk ..58

Future Work ...59

Chapter 9 References ..60

Appendix A Sound Design Document by Victor Avila ..61

Gamification Quest: *

8

List of Tables
Table 1 Design Planning ...14

Table 2 Implementation Planning ..15

Table 3 Art Planning ...16

Table 4 Documentation Planning ...16

Table 5 Risks ...18

Table 6 Dual Formations ..23

Table 7 Triple Formations ..23

Table 8 Sounds & Music List ...25

Table 9 BT Checkers ...35

Table 10 Actions ...36

Table 11 BT Decorators ..37

Table 12 BT Nodes Miniatures ...38

Table 13 2D Game’s Elements..49

Table 14 Environment Elements ..52

Table 15 Project's Item Count ..55

Table 16 Project’s Schedule Deviation ...57

Table 17 New Schedule tasks ...58

9

List of Figures
Figure 1 Grant diagram ..17

Figure 2 Mechanic Layers ...21

Figure 3 GUI ...26

Figure 4 Familiar's GUI ...27

Figure 5 Characters' Interfaces ..29

Figure 6 Familiars' Position in all the formation ...31

Figure 7 SteeringOutput struct ..33

Figure 8 Kinematic struct ...33

Figure 9 SteeringObject interface ..33

Figure 10 BT_Task Node ...34

Figure 11 Enemy Behaviour Tree ...38

Figure 12 Boss Behavior Tree ...39

Figure 13 Familiar Movement s..40

Figure 14 Fighter Attack Subtree ...41

Figure 15 Defender attack subtree ..41

Figure 16 Magician attack subtree ...42

Figure 17 Action Class ..43

Figure 18 Enemy Seek Action ...43

Figure 19 Action Manager Pseudo-code ..45

Figure 20 Blackboard Interface ..46

Figure 21 The complete AI Structure ...47

Figure 22 GQ Main Menu Screenshot ..48

Figure 23 Avatar's Designs ...50

Figure 24 Avatar's modelling ..50

Figure 25 Avatar's final model..51

Figure 26 Avatar's skinning ..51

Figure 27 Dungeon Level ..52

Figure 28 Download code ..54

Figure 29 Formation Screenshots ..54

Figure 30 Combat Screenshots ..54

Figure 31 Boss Combat Screenshots ..54

file:///C:/Users/mrack_000/Downloads/Memoria%20Final%20(2).docx%23_Toc486888890
file:///C:/Users/mrack_000/Downloads/Memoria%20Final%20(2).docx%23_Toc486888900
file:///C:/Users/mrack_000/Downloads/Memoria%20Final%20(2).docx%23_Toc486888901
file:///C:/Users/mrack_000/Downloads/Memoria%20Final%20(2).docx%23_Toc486888902
file:///C:/Users/mrack_000/Downloads/Memoria%20Final%20(2).docx%23_Toc486888903
file:///C:/Users/mrack_000/Downloads/Memoria%20Final%20(2).docx%23_Toc486888904
file:///C:/Users/mrack_000/Downloads/Memoria%20Final%20(2).docx%23_Toc486888905

Gamification Quest: *

10

Chapter 1

Technical Proposal

1.1 Motivation

From my point of view, students lack in motivation during the school year, in general terms.

They perceive their education more as an obligation than something that benefits them and the

homework and exams turn into a real pain for them. I think that’s something that can and should

be changed.

From my previous experience working with children, I learned that one of the better ways

to teach a kid something is by making they play and having a good time but, at the same time,

making them aware that it is something serious and that they are learning. That, joining my

background as video game developer and my interest in artificial intelligence techniques comes

up in this project.

1.2 State of the Art

This section discusses the main aspects of the project, deepening on the current state of the

main issues the project approaches.

Gamification

“Gamification is the application of game-design elements and game principles in non-

game contexts. Gamification commonly employs game design elements which are used in

non-game contexts to improve user engagement, organizational productivity, flow, learning,

crowdsourcing, …” [1]

In an educational context, most of gamification systems aim to improve the student’s

performance by proposing challenges and rewards, competitiveness and interaction

between students. An example is the application ClassDojo [2] that helps the teacher

improve the learning experience in the classroom in a simple and easy way, using

achievements and rewards for the students in real time during the lessons.

11

RPG Games

A role-playing game (RPG) is a game where the player takes the role of a fictional

character and take responsibility for his action in the world where the game develops.

Normally there is a narrative in the game that guides the characters and leads them to

different situations that they have to solve in order to continue the story.

The variant of RPG that concerns the project is the RPG video game type which is a video

game genre where the player controls the actions of a character (and/or several party

members) immersed in some well-defined world. This character normally adopts some role

in the party group such as fighter, magician, healer …

This project's mechanics are based on Final Fantasy XIII [3] paradigms system [4] where

the player chooses a role for every character in several formations and changes them during

the game.

AI Techniques

The project uses two main AIT with some variations to be implemented on Unity 3D:

Steering Behaviors: This technique aims to help autonomous characters move in a

realistic manner, by using simple forces that are combined to produce lifelike,

improvisational navigation around the characters' environment. They are not based on

complex strategies involving path planning or global calculations, but instead use local

information, such as neighbor’s forces. This makes them simple to understand and

implement, but still able to produce very complex movement patterns. This technique is the

alternative to the NavMesh and NavAgent Unity Components.

Behavior trees: A behavior tree (BT) is a mathematical model of plan execution used in

computer science, robotics, control systems and video games. They describe switchings

between a finite set of tasks in a modular fashion. Their strength comes from their ability to

create very complex tasks composed of simple tasks, without worrying how the simple tasks

are implemented. BTS present some similarities to hierarchical state machines with the key

difference that the main building block of a behavior is a task rather than a state. Its ease of

human understanding makes BTs less error prone and very popular in the game developer

community. BTs have shown to generalize several other control architectures.

1.3 Game Overview

GQ* makes up the interactive part of the GQ application: asides the academic performance,

the student need to replay several times the different levels of the game in order to power up

his account. In the levels the player has to complete a dungeon, traveling across its halls to find

different objects and facing the monsters who live in it to gain experience points (EP). He has

the help of his familiar spirits (or simply familiars), NPCs with its own characteristics, controlled

by a set of AI techniques that make them adapt their behaviors in real-time to the player's

commands. The familiars have five basic stats that determine their role and power: VP (Vitality

points), Attack (Physical damage), Magic Attack (Magical damage), Defense (Resistance to

physical damage) and Magical Defense (Resistance to magical damage).

Gamification Quest: *

12

Before entering the dungeon, the player has to choose three of his familiars and put them

in three different formations (a formation is a set of three familiars with one role each). Changing

the role of the familiars, the player can create different formations focusing on the attack or on

the defense according to the situation. Once inside the dungeon the player can swap between

the three preconfigured formations and the familiars will react adapting their behavior to their

new role in each formation. To fulfill the different formations steering behaviors AI techniques

will be used, implemented separately and combining them to create more complex squadron

behaviors.

In total, each familiar can play three different roles in a formation. Each of them powers the

stats of the familiar according to his function:

 Fighter: Is placed on the front line and takes care of inflicting physical damage to the

enemy party. Power Stats: Attack and VP.

 Wizard: Is placed in the rear of the formation and cast powerful spells to inflict magical

damage to the enemies. Power Stats: Magic Attack.

 Defender: Is the spearhead of the formation and his duty is to receive as most damage

as possible from the enemies in order to protect his weaker partners. Power Stats: VP,

Defense, and Magical Defense.

The enemies, just like the familiars, have the five basic stats named before but, unlike the

familiars, they cannot change roles, each type of enemy will have a predetermined role and will

always be that.

At the time of combat, the player can select an enemy as the target and attack him with

either physical or magical damage. His familiars will focus their attacks on him according to the

criteria of its actual role.

Due to the gamification context in which the game is found it is necessary that the levels are

replayable and that they are not boring. Because that the enemies are spawn at different points

each time and has a strength proportional to the player’s level.

With the game concept designed around gamification, the player sees his efforts rewarded

within the game, with an increase in his stats if he has worked correctly in the course. Thus, the

reward is linked directly with the actions carried out, encouraging the activity of students within

the gamificated subject by the GQ app.

1.4 Objectives

This project has two types of objectives to accomplish. The first one are the Subject’s

own objectives, listed on the Docent Guide of the subject [5]. The other ones are the

objectives set up explicitly to this project and are listed next:

 O1 - Implement a video game which takes advantage of the Gamification Quest app.

 O2 - Minimize the use of Unity tools to implement the AIT used on the game, creating

them from scratch whenever possible

 O3 - Design and implement fun game mechanics that integrate the use of complex AIT.

 O4 - Implement the familiars so that they respond in real-time to the player's orders.

13

1.5 Justification

In this section, the relation between the proposed project and the courses taught in the

pertinent bachelor’s degree will be stated. Since Gamification Quest: * is a complete video game

almost every subject attended during these years could be mentioned. However, only the most

related ones are listed.

As mentioned in section 1.4, the main objectives of the project are creating complex AIT

from scratch and taking advantage of the GQ app, so the most related subjects from the

bachelors are VJ1231 Artificial Intelligence and VJ1222 Video Game Conceptual Design. The first

one, for the knowledge about Artificial Intelligence Techniques such as Steering Behaviors and

Behaviors Trees in order to accomplish O2, O3, and O4. The Second One to fulfill O1 and be able

to integrate the game mechanics with the GQ app in an organic way.

As the basis for VJ1222 is necessary the contents thought in VJ1215 Algorithm and Data

Struts in order to implement the AIT techniques mentioned and accomplish the real time

requirement in O3

For the visual aspect and for the UI, the subjects VJ1223 Videogame Art and VJ1216 3D

Design are strictly necessary, for both 2D graphics and 3D models.

1.6 Tools

This section lists the tools that will be used during the design and development of this game.

These tools can be grouped according to the topic they are related.

Programming

Unity 3D: The main tool for the game development along with Visual Studio. Unity 3D is

a free game engine that supports every requirement the project could depend on. It

supports both 2D and 3D elements, an essential feature for the creation of interactive UI.

Visual Studio: An integrated development environment from Microsoft. It is used to

develop computer programs for Microsoft Windows, as well as websites, web apps, web

services and mobile apps. Along with Unity3D is the main core of the programming

development of the project.

3D Art

Autodesk 3DS Max: A professional 3D computer graphics program for making 3D

animations, models, games, and images. Furthermore, it incorporates rigging and skinning

tools, as well as a full animation support. Models are then easily exported for their use in

the selected game engine.

2D Art

Adobe Photoshop: A raster graphics editor used to create all the sprites, buttons and

icons from the game.

Gamification Quest: *

14

Documentation

Overleaf: An online Latex editor used for the first deliverable D1-Technical Propose.

Microsoft Word: A word processor developed by Microsoft. Due to the lack of

knowledge about Overleaf and Latex, Microsoft Word was chosen to write up this final

report.

Microsoft PowerPoint: A presentation program that provides templates, transitions,

popping elements and annotations, very useful for the final presentation.

1.7 Project Plan

This section explains the intended project schedule for the Gamification Quest: * game. The

whole development of the project can be grouped in for sections. Each section has his own task

specifying the task code, the task name, the initial date, and the expected duration.

Section 1 –Design (D)

General aspects of the game design. All these aspects will be explained ahead in section

3.

Table 1 Design Planning

D - Game Design

Code Task Duration Hours

D1 Mechanics Design 01/02 --- 05/02 7

D2 Characters Design 06/02 --- 27/02 17

 D21 3 Familiars Design 06/02 --- 19/02 10

 D22 4 Enemy Design 16/02 --- 27/02 7

D3 Level Design 25/02 --- 04/03 6

Total Hours 30

Section 2 –Implementation (I)

This section includes all the implementation of the project: mechanics, scene and the

artificial intelligence technics required for the game. It also takes on the test and debugs

aspect which is developed throughout the implementation process.

15

Table 2 Implementation Planning

I – Game Implementation

Code Task Duration (from --- to) Hours

I1 Mechanics Implementation 04/02 --- 01/04 20

 I11 Character Mechanics 04/02 --- 18/02 5

 I12 Enemies Mechanics 18/02 --- 04/03 5

 I13 Familiar Mechanics 04/03 --- 01/04 10

I2 Scene Implementation 01/04 --- 30/06 20

 I21 Environment 19/06 --- 23/06 3

 I22 Camera Movement 01/04 --- 04/04 2

 I23 Object System 23/06 --- 30/06 5

 I24 Enemies Respawn 16/06 --- 20/06 5

 I25 User Interface 04/04 --- 12/04 5

I3 Artificial Intelligence Techniques 12/04 --- 15/05 80

 I31 Familiars AIT Design 12/04 --- 19/04 7

 I32 Enemies AIT Design 17/04 --- 19/04 3

 I33 Familiars AIT Implementation 20/04 --- 08/05 45

 I34 Enemies AIT Implementation 08/05 --- 15/05 25

I4 Testing & Debugging 04/02 --- 08/07 45

Total Hours 165

Section 3 –Art (A)

This section considers all the phases of the game art, from concept art to animation and

the subsequence integration in the game.

Gamification Quest: *

16

Table 3 Art Planning

A – Game Art

Code Task Duration (from --- to) Hours

A1 Blueprints 15/05 --- 18/05 14

 A11 Familiar’s Blueprints 15/05 --- 16/05 6

 A12 Enemies’ Blueprints 17/05 --- 18/05 8

A2 Modelling 19/05 --- 01/06 35

 A21 Familiars’ Modelling 19/05 --- 25/05 15

 A22 Enemies’ Modelling 26/05 --- 01/06 20

A3 Animations 30/06 --- 09/07 21

 A31 Familiars’ Animations 30/06 --- 05/07 9

 A31 Enemies’ Animations 5/07 --- 09/07 12

A4 Game Integration 01/06 --- 09/06 10

Total Hours 70

Section 4 – Documentation (Doc)

In this section all the deliverable documents required for the project are reflected.

Table 4 Documentation Planning

Doc – Project Documentation

Code Task Duration Hours

Doc1 Technical Proposal 02/02 --- 12/02 10

Doc2 Game Document Design 20/02 --- 01/04 10

Doc3 Final Technical Report 15/05 --- 03/07 15

Total Hours 35

17

Figure 1 shows up the schedule in a more graphical way, created using Office Timeline,

a Power Point extension.

1.8 Risk Management

In total, the number of hours planned for the project are 300. However, this is a schedule

prior to any work on the project so it is very probable that some issues come up and breaks

the schedule. To anticipate such problems, this section includes some of the most expected

problems and a containment plan to minimize their impact in the project schedule and final

result. Table 5 contains all this risks with an ID, Name, the probability (P) of it appears (High

- H, Medium- M, Low – L), its impact (I) on the project schedule (same measure as the

probability), a description of its effect and the containment plan to perform

Figure 1 Grant diagram

Gamification Quest: *

18

Table 5 Risks

ID Name P I Effect Containment Plan

R1 Miscalculate
implementation
task durations

H M Some task wouldn’t be
completed for the end of
the project and the game
can’t be played

Continue to work on the
most crucial tasks for the
project presentation

R2 Lack of time to
devote to art
and modelling

H L The initial mock-ups of
the development phase
will continue to be,
damaging the visual
aspect of the game

UI: Reuse as much
elements from the GQ
app as possible, provided
they meet minimums

3D : Model the minimum
number of characters and
use palette swap to
differentiate them or
download and use some
free models from the
Unity Asset Store

R3 Lack of skill or
knowledge in
some aspects of
the game
development

H H Some task can’t be
completed or take too
much time doing trial and
error

Invest part of the time of
the task in investigating

R4 Data loss L H Some files or the whole
project get lost

Regularly create back-ups

R5 Scheduled tasks
turn out to be
incorrect or
poorly focused

M L The initial schedule turn
out to be useless

Work on the new task
and reflect them in the
Results Section

19

Chapter 2

Gamification Context

This Chapter explains the basis of the Gamification Quest application, developed by Marina

Granell and myself while working in the Instituto de Nuevas Tecnologías de la Imagen (INIT)

during our internship. Nevertheless, the Gamification Quest: * project remain independent of

the work done for the GQ app. Both the design and the implementation of GQ: * are completely

developed for the bachelor’s degree final project.

GQ* places inside a whole gamification system called Gamification Quest (GQ) which

integrate a university degree inside a game app. GQ collects the students courses information

from the university Moodle page and transforms it into game elements, motivating the student

to increase his academic performance in order to progress inside the game.

On the basis of the Gamification Quest services, the main idea is to create a feedback

between the university performance of the student and his gameplay in the application. On the

one hand, if the student attends to class and does his homework will become in a power-up of

his avatar in the game. On the other hand, make progress in the game will make the student

achieve new educational challenges like secret tasks or exams to get more grades or unlock new

features in the game.

The app reads the student’s courses information and take the delivers and quizzes from the

academic subjects and transforms them into Tasks. When the student completes the tasks on

Moodle (delivering the delivers or answering the quizzes) he gets a world key from the GQ app.

That key allows the user to unlock a new playable level.

The student is represented in the game by an avatar. The avatar level represents the player

progress in the game. In order to level up, the player must collect experience, collecting the

tasks rewards once they are completed.

The app creates also a ranking between the students who are using it. Each student has a

personal ranking facing the students who have the same degree subjects and taking into account

them avatar level and the number of completed task they have. By doing that the app creates a

competitiveness between the students and motivates them to strive during the course.

Gamification Quest: *

20

Chapter 3

Game Design Document

Gamification Quest: * is a 3D game witch complements the Gamification Quest app by

carrying out the playable part of the gamification system. The app collects the academic

performance of the student to unlock new levels and allowing the player to improve. This

chapter is a game document design of the game implemented and corresponds to the items D1,

D2, and D3 of the section 1.7 from the chapter 1.

In the game, the player is a mage who controls its familiars and walks through the dungeons

defeating the monsters and leveling. The game doesn’t have a plot line which dictate the game

advance, is the student performance in the course which makes the game advance unlocking

new dungeons, each one harder than previous. Each dungeon will have a start point and an exit,

the player, together with its familiar, has to across it, defeating the enemies and collecting

experience to level up both, the player and its familiars.

3.1 Characters

There are three archetypes of characters in the game divided in playable and no playable

characters: the player, the familiars and the enemies. In this section all three are explained.

Avatar

The player is represented in the game through the avatar, an androgynous character

who wears a long poncho which covers its body and its head with a hood and grips a magic

wound to fight the dungeon monsters. Its appearance is as generic as possible in order to

make easier the player embodiment. The player can do both physical and magical attacks to

deal damage against the enemies. Nevertheless, its strength isn’t enough to fulfill the

dangerous dungeon.

Familiars

They are the magic creatures that accompany the player. Based in West Europe
mythology, a familiar is a magic entity that make a pact whit the witch or mage who summon
it, becoming thus their servant and obeying all their orders.

21

Enemies

The enemies are the different types of monsters which live in the dungeon. They behave
is similar to the familiars but they will attack the player’s party. Two categories can be
differentiated:

Regular monsters: They live in the dungeon and wander their passages. There are very
aggressive and will attack the player’s party when they see it.

Dungeon Boss: Is the main enemy who guard the dungeon exit. In order to get out, the
player must defeat the boss and his minions (normally some regular monsters from the
dungeon). The dungeon boss is one of the different familiars the game has but more
powerful than his familiar version and the regular monsters of his dungeon.

3.2 Game mechanics

In this section the game mechanics are exposed. In pursuit of a more organic understanding,

the different mechanics are explained in a short of chronological order, similar to a game flow

explanation.

But, at this point, it is necessary to distinguish between three layers of mechanics in the

Gamification Quest Project. The first layer is the one explained in section 2, the mechanics

between the student academic performance and the application.

The second one is the mechanics of the GQ* game integrated on the application. These

mechanics make sense based on the repetition of the GQ* levels and are in a deadlock between

GQ app and GQ* levels. These mechanics are explained in this section for reasons of cohesion

with the rest of the project, however its implementation is not contemplated as part of the work.

Finally, the third layer is the mechanics of the proper playable level. These mechanics are

also explained ahead in this section and later, in section 4, their implementation is shown.

The representation of how each mechanic layer interacts with the whole gamification

experience is show in figure 2.

Figure 2 Mechanic Layers

So on, first the layer 3 mechanics are explained, in order to better comprehend the layer 2

mechanics.

Avatar

Gamification Quest: *

22

The avatar is the only character controlled by the player so their mechanics are the basis

of most games, move and attack. For the attack the player can choose between physical

attack or magical attack. Regardless of which one their use, there are a little cool down to

both in order to prevent the attack spawn. To perform an attack, the avatar must have an

enemy target.

Familiars

The familiars are NPCs controlled by AIT to respond in real time to the player’s

commands. Each familiar has five basic stats which express the familiar strength in the game.

These stats are: Attack (Physical damage), Defense (Physical damage resistance), Special

Attack (Magical damage), Special Defense (Magical damage resistance) and HP (Health

Points). Each type of familiar has a specific set of stats which increase by leveling up.

Based on the stats set of each familiar, is possible to perceive a function of that familiar

inside the player’s party, for example, as the attacker, the defender or the magical attacker.

Each type of familiar has its own stats set allowing to categorize them based on their total

amount of stats. That means there are familiars stronger than others without considering

their level.

Besides these stats sets, each familiar can play up to three different roles in the group,

each one focused in one job inside the group. The game AI takes care of controlling all the

characters except the avatar, but, with the role system, the player can guide their familiar

behavior depending on their interests. The roles are:

 Fighter (F): Is placed on the front line and takes care of inflict physical damage to the

enemy party. Powered Stats: Attack and VP.

 Wizard (W): Is placed in the rear of the formation and cast powerful spells to inflict

magical damage to the enemies. Powered Stats: Magic Attack.

 Defender (D): Is the spearhead of the formation and his duty is to receive as most

damage as possible from the enemies in order to protect his weaker partners. Powered

Stats: HP, Defense and Magical Defense.

It is important to note that the stats set and the role aren’t related. The stats set pertains

to the familiar, while the player decides its role and, consequently, which stats are powered.

In this sense, the player can choose an attacker type familiar to play the defender role, and

its stats will be powered as such.

The way to choose the familiar role and how to change between them are explained

ahead.

Formations

A formation is the combination of up to three familiars with one role each. As a

formation can have two or the three familiars playing the same role, there are sixteen

different formations, plus the three one member formations and the player going without

familiars. Each formation has a name to easily and quickly distinguish it from another. The

names are show in tables 6 and 7 for the two and three formations respectively. Note that

the names are based on the FFXIII Paradigm system.

23

Table 6 Dual Formations

Formation Name Roles

Double Trouble F + F
Slash & Burn F + W

Lifeguard F + D
Dualcasting W + W

Arcane Defense W + D
Twin Shields D + D

Table 7 Triple Formations

Formation Name Roles

Cerberus F + F + F
Aggression F + F + W

Legion of Steel F + F + D
Relentless Assault F + W + W

Delta Attack F + W + D
Impregnable F + D + D

Aquelarre W + W + W

Mystic Tower W + W + D
Patient Probing W + D + D

Great Wall D + D + D

Before entering the dungeon, the player can choose up to three of their familiars to

accompany and fight with them. Once the familiars are chosen, the player have to configure

their roles to create three different formations. The idea is to have an assorted set of

formation to be able to adapt different situations once inside the dungeon, because once

the player enters, they can’t change the formations.

Dungeons

When the player finishes building the formations, is time to actually play the dungeon.

During level, the player can freely swap between the chosen formations. The familiars will

adapt both their position and their behavior according to their new role in real time. Is in

this dynamic change where the main combat mechanic remains.

To clear the dungeon, the player has to defeat the dungeon boss who guards the exit.

Going straight to the boss or defeating all the enemies before exit the dungeon is up to the

player.

Enemies

The regular enemies are also controlled for the game AI and have a role as the familiars

but, unlike these, they cannot change their role during battle. This is to bring the player an

idea of their stats and hints of the strategy to defeat them.

As mentioned before, the dungeon boss is one of the familiars powered-up. Once the

boss is defeated the level is over and the player receive an according amount of experience

points (exp) and some familiar essences, which will be explained ahead.

So far this are the layer 3 mechanics, that means, the mechanics inside the level. In order to

motivate the player to replay the dungeons the layer 2 mechanics are essentials.

Levelling Up

When a dungeon is complete, the player receives exp according to the enemies

defeated. The familiars with whom the player cleared the dungeon take that exp and, when

Gamification Quest: *

24

they get the necessary amount, raise their level. A familiar start with level 1 and can raise

up to level 100. Every time it levels up, its stats increase and it becomes stronger.

Unlock new Dungeons

As referred in section 2, when the students complete a task, then obtains a word key,

which allows them to unlock a new dungeon. The different dungeons are shorted by levels,

where dungeon B1 is the easier and dungeon B15 is the hardest. The enemies inside the

dungeon are more powerful and more numerous as the level of their dungeon increase,

dropping more exp as hard as they are.

Getting new familiars

The player starts with one familiar only. In order to unlock new familiars their must

collects the enough familiar essences of that familiar to summon it. As mentioned before,

the familiar essences are collected from the dungeon boss, depending on the boss type will

drop that familiar essences. If the player collects the essences of one of their familiars, they

turn out in more exp for that familiar at the end of the level.

To allow the player to obtain all the familiars, the dungeon boss changes every 8 hours,

but not randomly. In the deepest levels, the hardest ones, the strongest and rarest familiars

appear and in the superficial ones, the weakest familiars. This feature encourages the

student to fulfil as much task as possible in order to obtain the best familiars.

3.3 Player Controls

The game is meant for be played on a mobile device, therefore the control system is
entirely tactile. The mobile orientation is landscape. As mentioned before, the game AI takes
care of all the character’s actions except the avatar. So the player only has four different
actions:

To move the party group, the player has a virtual joystick placed on the screen’s bottom
left corner. Actually the player only moves the avatar, their familiars follow him by AIT.

To change the current formation of their familiar the player has two transparent buttons
on the screen’s right bottom corner. By pushing the up or the down button the player swaps
the current formation for the next one or the previous one respectively. The formation
change is cyclic, so if the player is in formation 1 and press three times the down button
their will change from formation 1 to formation 0 then to formation 2 and again to formation
1.

To avatar’s attacks there are two circular buttons above the change formation’s buttons.
The left one is for physical attack and the right one for the magic attack. Each time one of
the buttons is pressed, both of them have an animation to represent the attack cool down.

Finally, to choose a target the player has to touch the enemy, if their touches it again it
will be dis-targeted.

3.4 Gameplay

In a short of resume this section explains the general overflow of the game.

First the player chooses three of their familiars and configure three different formations

with their roles. Then enters the dungeon and begins to go through its halls looking for the

exit or for enemies to fight.

25

When their found an enemy quickly identify its role and change to the accurate

formation to defeat it. Their goes on until find the exit and the dungeon boss. When defeats

them the level is clear and the player receives exp and, if it comes to that, familiar essences.

3.5 Game Visual Design

As mentioned before, GQ: * is a part of the Gamification Quest app, that means they

share a common visual design. The art can be distinguishing in 2D Sprites, for the UI and

textures, and 3D models. Both types keep a similar style with a medieval aesthetic and

elements with magic motifs but use different color palettes.

The sprites use a desaturated color palette and are elements without boundary lines,

hard shadows and plane aspect.

On the other hand, the 3D models use a more colorfully palette with simply degradants

textures and, occasionally, bump and transparency maps. The models are low poly (around

1500 polygons) because the game is for mobile devices.

3.6 Game Music & Sound Design

The music and sounds of the game are completely originals. The composition of the

music is borned by Victor Avila, student from the Conservatori Superior de Música de

Castelló. Information regarding the composing of these and other tracks included in the

gamification application can be found on Appendix A.

The music is composed taking care of the medieval aesthetic, in order to keep cohesion

in the game. Table 8 shows the list of sounds used for the game and when are they played.

Table 8 Sounds & Music List

Sound
Code

Sound Name When is played

S_01 Button click When the player touch the GUI buttons
S_02 Magic Attack When any character uses a magical attack

S_03 Physical Attack When a familiar or an enemy does a physical attack
S_04 Avatar P Attack When the avatar executes a physical attack

S_05 Magic Charge Previous to any magic attack
S_06 Avatar treads While the avatar is walking or running
S_07 Familiar damage When a familiar gets hurt

S_08 Enemy Death When an enemy dies
S_09 Avatar’s shout When the avatar attacks or gets attacked
M_01 Track 01 Always as background music

Gamification Quest: *

26

Chapter 4

Project Development

This section explains the concrete work done for the project, in terms of

implementation. This chapter, along with 5 and 6, describes the work done for each item

scheduled in Section 1.7.

4.1 Game User Interface (I21)

The game user interface (GUI) is in charge of receiving and transforming the player’s

input into action on the game, also shows to them the internal changes of the game in a

visual way. It is composed for several elements, shown ahead in Figure 3, plus a Script named

GUIController.

Figure 3 GUI

27

The Controller receives the player touches and execute a proper function for each

button, calling the other controllers methods. It also has function to upload the player’s,

familiars’ and enemy’s health bar and the familiar’s role color.

1 Player’s GUI: This element is composed by a background sprite, a sprite with the

avatar’s image, a slider which represents the player’s hp and a Text Component with the

player’s name. The slider is the same for the rest of elements, it lerps its color from green

when it's at max hp to red at zero passing by yellow at half hp.

2 Enemy’s GUI: Similar to the Player’s GUI but holds the player’s current target enemy

information. If the character doesn’t have a target, the GUI is deactivated.

3 Familiar’s GUI: It is composed of three to zero individual components, depending on

the number of familiar the player has at that level. Each component it’s very similar to the

player’s and enemy’s GUI but have another sprite which represents the role of the familiar

in that moment. The background image is also slightly tinted with red, blue or yellow

depending on the familiar role as shown in Figure 4.

Figure 4 Familiar's GUI

4 Physical & Magical attack: This buttons trigger the avatar’s physical and magical attack

when pressed. They have an animation to show the delay between attacks.

5 Change Formations: This pair of buttons change the current formation for the next or

the previous one, allowing the player to select the desire formation directly.

6 Joystick: This component receive the player’s movement input and send it to the

PlayerController to move the avatar.

4.2 General Information Classes

To communicate the game with the GQ app an information script is necessary. This

script, named StaticInfo, holds the user preferences chosen on the app such us the

familiars to use and their stats, the configured formations, the player level and stats and so

on. The characters’ scripts and the game controller take the information they need from this

script.

Gamification Quest: *

28

4.3 Game Characters(I1)

The characters of the game are four: The player Avatar, the familiars, the enemies and

a special kind of enemy, the dungeon boss. In this section the components and the scripts

of each character are shown, explaining their relevant functions but omitting the AIT used

to control them, that part will be explained in detail later in Chapter 5.

GameObjects & Components

Before explaining each element individually, the common features are explained. Each

element is represented in game by a GameObject with four main components. First, a mesh

render and a mesh collider to represent the proper model for each element and for the

proper collision detection with the rest of the game elements. Second, a Rigidbody

component to be able to apply the characters’ movement physics, again explained later in

Section 4.4. And finally a Scrip which makes the character’s main controller function.

Furthermore, all the elements have another GameObject nested named FTCanvas for

Floating Text Canvas. As name suggest, is a Canvas for showing the character incoming

damage during game. It’s placed above the character and renders a string of numbers which

represent the incoming damage for the character. The numbers appear when the character

is damaged, they rise for a few seconds and then disappear. The numbers’ color shown the

type of the incoming damage, red for physical attacks and blue for magical. If the character

is defending themselves, then the number’s color is yellow, no matter the damage’s type.

Except the player avatar, the rest of characters have another Canvas named

GroundCanvas. It is placed at the bottom of the character and renders different things for

the familiars and the enemies. For the first one, the canvas is always active and shows a halo

image with different colors depending on the familiar’s role. The colors are red for fighters,

blue for wizards and yellow for defenders. The enemy’s ground canvas renders an image too

but is the target sprite. The canvas is normally deactivated and only shows up when that

enemy is targeted for the player.

The player avatar has several children GameObjects that serve as placeholder for their

familiars. They are divided into vanguard and rearguard. The first ones for the fighters and

the defenders and the second ones for the wizards. As children of the avatar GameObject

they move and rotate according to it so they always keep their relative position to it. The

familiar only have to seek their placeholder without taking care of the avatar position or

orientation.

Scripts

In terms of coding, as said before, each type of character has its own Controller Script.

Nevertheless, this scripts share some common features between them. These ones are

explained first and after that the particularities of each controller. As before, all about AIT is

omitted, to be explained in Section 4.4.

All controllers inherit from the Unity class MonoBehaviour in order to use the class’

functions Awake, Start, FixedUpdate and OnMouseOver. Also, they are related to two main

interfaces to distinguish between them, the IEnemy interface and the IPlayerGroup interface.

The first one for the EnemyController and the BossController classes, the second one for

the Player Controller and the FamiliarController classes. This interface level is necessary

29

to simplify actions between both groups, for example when an enemy has to choose a target

does not care if it is the player or a familiar, knowing it is an IPlayerGroup object is enough.

Figure 5 shows the functions of each interface. Be noticed that the difference in the number

of functions is due to the AIT. As the avatar doesn’t use any AIT most of the functions are

not needed in the PlayerController, they are implemented on the FamiliarController and

taken by the AI from there directly.

Figure 5 Characters' Interfaces

As can be noticed, the functions’ names are self-describing. The first block are get

functions that only return the value described, the second are method without any special

feature or complicated algorithm.

Going into detail of each controller, the EnemyController and the BossController are

very similar. The main difference is in the AIT used and the behavior, explained in detail in

section 4.4. They are composed basically by the functions of the IEnemy interface which are

now explained:

TakeDamage: The variable “cant” is the value of incoming damage (calculated for the

attacker) and “type” is the type of damage (Physical or magical). The method checks if the

enemy (or the boss) is defending itself and discount the defense or special defense value to

the incoming damage, if it is defending discounts twice the value. Then calls the method to

instantiate the floating text in the FTCanvas, updates the enemy hp value and calls to the

GUI controller to update to. Finally, it checks if its current hp is less or equal to zero in which

case calls the Death method.

SetAsPlayer: the variable “b” is a Boolean to set the enemy as target. If it’s true, the

GCanvas with the target image is activated.

public interface IPlayerGroup
{
 Vector3 GetMyPosition();
 void takeDamage(int cant, int type);
}

public interface IEnemy
{
 SteeringManager GetSteeringManager();
 ActionManager GetActionManager();
 EnemyBlackBoard GetEnemyBlackboard();
 IPlayerGroup GetTarget();
 Vector3 GetMyPosition();
 Vector3 GetMyInitialPos();
 float GetWanderRange();
 float GetDetectionRange();
 int GetHP();
 int GetMaxHP();
 string GetName();

 void TakeDamage(int cant, int type);
 void SetAsTarget(bool b);
 void ChooseTarget();
 void LooseTarget();
 void MagicalAttack();
 void PhisicalAttack();
 void Defend(bool b);
}

Gamification Quest: *

30

ChooseTarget: This method looks for the player’s familiars and checks if any of them has

the defender role. If one has it, it is set as the enemy target, else, the player is set as target.

LooseTarget: Set the enemy’s target to null

Physical&MagicalAttack: These methods work the same. They calculate the damage

dealt to the target depending on the enemy’s physical/magical attack value, with a

randomness of 50% of the value.

Defend: this method just set the defending bool to true or false.

The FamiliarController share the IEnemy methods TakeDamage, Defend and the attack

ones. The specific methods of this type of character are two and are related to the role

formation:

ChangeRole: This method receives the new familiar role and changes the familiar’s GUI

component, the halo image and the behavior.

NewPosition: Assigns the new familiar’s position within the formation. This has to be

done separately because the PlayerController must know all the familiars position in the

formation before they can be assigned to each familiar. This is detailed explained ahead.

The PlayerController takes the initializer function in the game. It also shares the

TakeDamage and the attacks methods but its most important methods are the followings:

Awake: In the Unity Awake method the PlayerController takes care of extract the

number of familiars from de StaticInfo class and initialize all the familiars. It also calls the

next method ChangeFormation.

ChangeFormation: This method is called when the GUI buttons for change formation are

pressed, this task is divided in two. The first one is the AskNewPosition method. This method

is used to preconfigure the new familiar’s formation. It is called once per familiar and assigns

the new role for each of them and place it in one of the two auxiliary list the

PlayerController has, the front list and the back list. This is because, as said before, the

Player GameObject has six placeholders for the familiar’s formation position but it doesn’t

place the familiars always in the same way, it depends on the number of front or back

familiars the new formation has. Figure 6 shows the different options for two and three

familiars formation.

31

Figure 6 Familiars' Position in all the formation

When all familiars have been placed in one of the two auxiliary lists, the AssignPosition

method is called. This method checks the two auxiliary lists and assigns a position for each

familiar based on the Figure 6 positions.

Move: This method transform the joystick input into the player movement.

4.4 Testing & Debugging

 The testing task was taking on during all the implementation work. Each time a new

feature was added it was tested and debugged to avoid having a stack of bug at the end of the

development of the game.

 The testing & debugging of the implementations described in this chapter were quite

easy to perform due to the atomic performance of each task. If something was odd, it was simple

to track down the error and solve it. This is not the case with the implementations of the next

chapter, that’s why it has its own Testing & Debugging Section.

Gamification Quest: *

32

Chapter 5

AI Techniques

This chapter explains the AIT used for the familiar and enemy control and accomplish

the items I3 listed on Section 1.7. The two main techniques are Steering Behaviors and

Behaviors tree. Both are implemented completely from zero, using the Unity tools just in

the essential cases. To implement them the book Artificial Intelligence for Games, by Ian

Millington and John Funge[6], is used.

Both techniques have a huge potential to be expanded much more than this game does,

but this aspect overtake the project’s objectives, so the work donned is focused on creating

the structures needed for the implementation of each technique and creating only the

necessary conducts (steering behaviors) and action (behaviors trees) for the correct game

performance.

5.1 Steering Behaviors

 This technic is used to perform the character’s movement. It applies an addition of

different forces to the character’s Rigidbody. The different conducts are implemented as

functions and are called from a SteeringManager class which every character has at his

Controller. The different implemented conducts are:

Seek: This conduct receives a target position and calculate the force needed to take the

character from its position to the target one. It also applies an Arrive conduct, which slows

down the character when is close to the target position, in order to avoid an abrupt stop.

Flee: The inverse conduct of Seek. It also implements the Arrive conduct and calculates

the force needed to move away the character from the target position.

Wander: This conduct makes the character stroll around an area. To do so uses the Seek

conduct to a target which is slightly moved each frame ahead the character.

Stop: This conduct resets the Kinematic to stop applying velocity to the RigidBody,

making it to stop.

33

In order to standardize the different conducts and the characters which implement them

several C++ Structs and interfaces are needed:

SteeringOutput: This struct is used to store the resultant force of each conduct. It

contains a Vector3 representing the linear force resulted and a float for the angle to axis Z.

Figure 7 SteeringOutput struct

Kinematic: This struct holds the physical information needed to update the RigidBody

component of each character. It contains the basic physical parameters, position, velocity,

orientation and angular velocity (rotation).

Figure 8 Kinematic struct

ISteeringObject: This interface is implemented in all the AI controlled characters’

controllers, as known, the familiar, the enemy and the boss controllers. It contains the

functions that the SteeringManager needs

Figure 9 SteeringObject interface

The SteeringManager class is created in every character which implements the steering

behaviors technique. This class contains the previous conducts as functions. Each time a

conduct is called the manager add its resultant steeringOutput to the result of the others

functions using the AddSteering function and save it in a variable named SteeringResult.

Once per frame, the Update function is called from the character controller. This functions

transforms the SteeringResult into a Kinematic and send it to the controller to be applied.

Then reset the SteeringResult to zero to handle the new upcoming function calls.

public struct SteeringOutput {

 public Vector3 linear;
 public float angular;

}

public struct Kinematic
{
 public Vector3 position;
 public float orientation;
 public Vector3 velocity;
 public float rotation;
}

public interface ISteeringObject
{
 Vector3 GetMyPosition();

 float getMaxVelocity();
 float getMaxRotation();
 float getMaxAcceleration();
 float
getMaxAngularAcceleration();

}

Gamification Quest: *

34

5.2 Behavior Trees

Behavior Tree (BT) technique is used to decide which action will the character do. They

are a synthesis of different AI techniques such as Hierarchical State Machines, Scheduling,

Planning, and Action Execution. Their strength comes from their ability to interleave these

concerns in a way that is easy to understand and easy for non-programmers to create.

A behavior tree’s main building block is a task. A task can be something as simple as

looking up the value of a variable in the game state, or executing an animation. Tasks are

composed into sub-trees to represent more complex actions. In turn, these complex actions

can again be composed into higher level behaviors. It is this composability that gives

behavior trees their power. Because all tasks have a common root class and are largely self-

contained, they can be easily built up into hierarchies without having to worry about the

details of how each sub-task in the hierarchy is implemented. Figure 10 shows the task root

class for the bt nodes together with the enum BT_Task_Result, which holds the different state

of a task.

Figure 10 BT_Task Node

Each node contains a BT_Task_Result to holds its state of execution, a blackboard to

read the information it needs (blackboards are explained in detail later), and a list of

children. It also has an AddChild function to have new nodes under the node and two virtual

public enum BT_Task_Result {True, False, Terminated, Running}

public class BT_Task : MonoBehaviour
{
 public BT_Task_Result result;
 public IBlackBoard blackboard;
 public List<BT_Task> childrens;

 public BT_Task Set(IBlackBoard B)
 {
 blackboard = B;
 childrens = new List<BT_Task>();
 result = BT_Task_Result. Running;
 return this;
 }

 public BT_Task Set(IBlackBoard B, BT_Task[] c)
 {
 blackboard = B;
 childrens = new List<BT_Task>();
 result = BT_Task_Result. Running;
 foreach (BT_Task child in c) { AddChild(child); }
 return this;
 }

 public void AddChild(BT_Task t) { childrens.Add(t); }

 public virtual void Run() { }
 public virtual void Terminate()
 {
 StopAllCoroutines();
 foreach (BT_Task child in childrens) { child.Terminate(); }
 result = BT_Task_Result.Terminated;
 }
}

35

functions Run and Terminate. That a function is virtual means it could be overridden for its

subclasses.

The set functions are used as constructors to pass the parameters needed for the node

and returns the node itself. But why use this functions instead of a constructor? By doing

some search [7] it is said that Unity isn’t thread safe, in terms of coordination, and can’t

interact with other threads. They can be used however to do calculations in background like

in any other C# program but this is insufficient for the behavior trees, as is explained later.

Nevertheless, Unity provides Courutines [8]. A courutine is like a function that has the

ability to pause execution and return control to Unity but then to continue where it left off

on the following frame. That functionality can be derived in some sort of parallel execution,

like a thread, and that’s why they are used for the BT. This tool is inherited from the

MonoBehavior [9] class that is why the BT_Node uses it. But the problem comes when this type

of class is instantiated. As a MonoBehaviour the script has to be attached to a game object by

the AddComponent function, but this function doesn’t accept parameters to configure the

component. Also a MonoBehaviour class can be created with “new Constructor()” but will not

work properly [10]. This is why the AddComponent plus Set functions are used.

Explained that issue, the BT nodes explanation is resumed. Tasks in a behavior tree all

have the same basic structure. They are given some CPU time to do whatever they have to

do, and when they are ready, update their result with a status code indicating either success

or failure. While they are running, the result holds the Running value to indicate the parent

node to wait until they finish. When an action is terminated, the result value is terminated.

The BT used for the game consist of four kinds of tasks: Conditions, Actions, Composites

and Decorators.

Conditions test some property of the game. There can be tests for proximity (is the

character within X units of an enemy?), tests for line of sight, tests on the state of the

character (am I healthy? Do I have ammo?), and so on. Each Condition returns the success

status code if the Condition is met and returns failure otherwise. Each of these kinds of tests

needs to be implemented as a separate task. Due to the information they need they are

divided into FamiliarChecker and EnemyChecker, shown in Tables 9.

Table 9 BT Checkers

Checker Division Checker Name What to Check

EnemyChecker

WanderRangeCheck Am I within the wander range?

PlayerRangeCheck Is the player in my vision range?
TargetNullCheck Have I a target?
CombatRangeCheck Is my target at combat range?

FamiliarChecker

EnemyRangeCheck Is the enemy in my vision range?
PlayerTargetCheck Have the player a target?

CombatRangeCheck Is my target at combat range?
MyPositionCheck Am I at my formation position?
AmITargetCheck Am I the enemy target?

Actions alter the state of the game. There can be Actions for animation, for character

movement, to change the internal state of the character ... Just like Conditions, each Action

will need to have its own implementation. Most of the time Actions will succeed, if there’s

Gamification Quest: *

36

a chance they might not, a Condition is used to check for that before the character starts

trying to act. Same as the conditions the actions are divided into EnemyActions and

FamiliarActions. Nevertheless, an action can’t be directly called from the BT, Action Nodes

are inserted in the behavior tree and they only instantiate their action to be execute by the

character. Actions in the strict sense are explained at the end of this section because of the

structure needed to perform them. However, a list of the action is show in Table 10 now in

order to better comprehend the behavior explanations.

Table 10 Actions

Action Division Action Name Performance

EnemyAction

WanderAction Calls the Steering Manager Wander
function

SeekAction Calls the Steering Manager Seek function
setting the target as one of the
IPlayerGroup Characters’ position.

ReturnAction Calls the Steering Manager Seek function
setting the target as the initial position of
the enemy. This action is used to return to
the enemy’s wander zone.

ChooseTargetAction Calls the ChooseTarget function from the
IEnemy character.

EnemyMagicAttackAction Since the action is call once per frame this
action holds a counter to only calls the
MagicAttack IEnemy function once each 60
frames (more and less one second).

EnemyPhysicAttackAction Similar to the EnemyMagicAttackAction
but calls the PhysicalAttack IEnemy
function.

EnemyDefenseAction Calls the Defend IEnemy function.
EnemyStopAction Calls the Steering Manager Stop Function.

LooseTargetAction Set the enemy target to null

FamiliarAction

GoToPositionAction Calls the Steering Manager Seek function
setting the target as the familiar’s
formation position.

LookAheadAction Rotates the familiar to align its orientation
with player’s.

SeekEnemyAction Calls the Steering Manager Seek function
setting the target as the player’s target
position.

FamiliarStopAction Calls the Steering Manager Stop Function.
FamiliarPhysicalAttackAction Equal to the Enemy Physical Attack Action

FamiliarMagicalAttackAction Equal to the Enemy Magical Attack Action
FamiliarDefendAction Equal to the Enemy Defend Attack Action

Both Conditions and Actions Nodes sit at the leaf nodes of the tree. Most of the branches

are made up of Composite nodes. As the name suggests, these keep track of a collection of

child tasks (Conditions, Actions, or other Composites), and their behavior is based on the

behavior of their children. Unlike Actions and Conditions, there are only five different

Composite tasks because with only a handful of different grouping behaviors it is possible

37

to build very sophisticated behaviors. The Composite Nodes used in this game are listed

next:

Selector: It runs their children in order waiting the first one to be done before running

next. If a child success the Selector stops to run the rest of its children and itself set its result

as True. A selector only fails when all of its children does.

Sequence: It runs their children in order the same way as the selector but to run the next

one the previous child has to success, if it doesn’t, the sequence fails itself and set its result

as False. A sequence only success if all of its children does.

NonDeterministicSequence: It behaves the same as a normal sequence but before

running its first child it shuffles its children to running them in a different order each time.

Parallel: It runs all of its children in parallel using the Courutine function. The parallel

success if all of its does, but fails at the moment one of its children does. When the parallel

fails, it forces all of its children to Terminate. Using this performance is possible to use a

parallel as a trigger, running an action while checking in parallel a Condition. If the condition

fails, the action will be interrupted.

A Decorator is a type of task that has one single child task and modifies its behavior in

some way. It could be thought of like a Composite task with a single child. Unlike the handful

of Composite tasks, there are many different types of useful Decorators.

The name “decorator” is taken from object-oriented software engineering. The

decorator pattern refers to a class that wraps another class, modifying its behavior. If the

decorator has the same interface as the class it wraps, then the rest of the software doesn’t

need to know if it is dealing with the original class or the decorator. The same idea is used

in the behavior trees. Table 11 shows the list of the two implemented Decorators and

explains its performance.

Table 11 BT Decorators

Decorator Name Performance

UntilFail Runs its child endlessly until it fails
Inverter Runs its child and, when it is done, inverts it result.

Once all the node types are explained, it is time to speak about the behavior trees

implemented. There are five different behavior trees in the game, one for the enemies,

another for the boss and three for the familiar, each per role. Table 12 shows the miniature

for every node explained before.

Gamification Quest: *

38

Table 12 BT Nodes Miniatures

Node Type Node Name Miniature

Composite

Sequence

NonDetSequence

Selector

Parallel

Decorator

Until Fail

Inverter

Action
<Action>

Condition
<Checker>

Enemy behavior Tree

Figure 11 Enemy Behaviour Tree

39

The enemy BT shown in Figure 11 works in the following way. The selector first run the

left subtree where is constantly checked if the player is in the enemy’s vision range, while

not, the enemy wander’s till it gets out of its wander zone and then returns to its initial

position. When the player is in range, the left parallel fails, making the first selector to run

the right tree. This tree runs its three children in order. The first one runs the Target Null

Checker, if it is true, the sequence continues and goes to the ChooseTarget action, if despite

it fails, the selector will run the second children. This child behaves similar to the previous

but checks if the enemy target, that insurance is not null, is at combat range, if it’s not, the

enemy seeks it.

After several runs, the behavior tree will reach the parallel node, which means the

enemy has a target and that it is also at combat range. The parallel runs as the first one,

constantly checks some properties while runs the attack sub-tree.

Boss behavior Tree

Figure 12 Boss Behavior Tree

Gamification Quest: *

40

The boss behavior tree works similar to the enemy BT. The left sub tree checks if the

boss is at its initial position and if it’s not, go there. It also checks if the player is on its range,

while it is not the boss does not do anything. When the player comes in the boss behaves as

a normal enemy, choose a target among the player group, seek it till itself is at combat range

and then starts the attack subtree.

Familiar Behavior Trees

Each familiar role has its own behavior tree composed by two subtrees, one for

movement and another for combat. All three role BT shares the same movement subtree

,but they behave different when battle comes. Figure 13 shows the shared movement

subtree in all the roles.

The target&RangeCheck makes sure that the player doesn’t set any enemy as target or,

if it has, that the enemy is not in range of the familiar. While these conditions match, the

familiar only concerns if it is at its formation position, going to there if it is out of place.

When the conditions are true, that is when the player has chosen a target and it is at range,

the parallel node fails and throw the running to the Attack subtree. As said before, this three

is different for each role.

Figure 14 shows the Fighter attack subtree. While checking if is still a target and it is at

range of detection, first checks if it is at its own combat range, if it’s not seeks it and then

starts the physical attack.

Figure 13 Familiar Movement s

41

The defender role has the most different attack subtree, as shown in figure 15. Despite

the familiar is at combat mode it still stays at its formation position, then it checks if it’s the

enemy target, defending itself in that case. If it’s not the target, then it physical attacks the

enemy.

Finally, the Magician attack subtree combines the previous both subtrees. The familiar

stays at its position and inflicts magical damage to the enemy. This is shown in Figure 16.

Figure 14 Fighter Attack Subtree

Figure 15 Defender attack subtree

Gamification Quest: *

42

Each Behavior Tree is saved as a class in order to be able to instantiate them at any

moment. For the enemies the BT is instantiated on the Start function when the enemy is

created. For the familiar, the BT is instantiated when it changes its role, allowing it to change

its behavior according to its new role.

5.3 Actions & Action Manager

As mentioned before the leaf nodes of the behavior trees are called action-nodes, but they

are not actions, they just create and action and waits until it is finished. So what is an action? An

action is the piece of code that makes a character do something. It could be something explicit

like seek an enemy or something internal, like choosing a target. The action system is used in

order to schedule the different request the BTs do. Figure 17 shows the father class for all the

actions along with the Priority enumerator.

Figure 16 Magician attack subtree

43

Figure 17 Action Class

When the BT reaches an action it is schedule with a given Name, Priority and an expiry time,

which sets the maximum time the action can be schedule without being executed. The virtual

functions are override in each concrete action, similar to the BT nodes. Each action determinates

if it can or not interrupt a current action in the canInterrupt method. The isComplet function

checks if the action is or not done. The execute function contains the proper code of the action.

In Figure 18 the EnemySeekAction is shown as an example. Its execute action calls the enemy

SteeringManager in order to move the character. In the SeekAction the isComplete function

checks if the distance to the target is minor than the COMBAT_RANGE distance.

Figure 18 Enemy Seek Action

In order to manage the actions, each character has an Action manager which takes cares of

all the actions request made by the Behavior Trees and schedule the character’s actions. The

public enum A_Priority { Low, Medium, High }

public class Action : MonoBehaviour
{
 public string Name;

 public float expiryTime;
 public A_Priority priority;

 public virtual bool canInterrupt() { return true; }
 public virtual bool isComplete() { return false; }
 public virtual void execute() { }
 public virtual void destroy() { Destroy(this); }

}

public class SeekAction : EnemyAction
{
 Vector3 targetPosition;

 public SeekAction Set(IEnemy ene, float ext, A_Priority p, string n)
 {
 Name = n;
 expiryTime = ext;
 priority = p;
 base.Set(ene);
 return this;
 }

 public override bool canInterrupt() { return true; }

 public override void execute()
 {
 targetPosition = blackboard.GetTargetPosition();
 steeringManager.Seek(targetPosition, 30, (StaticInfo.COMBAT_RANGE / 1.5f));
 }

 public override bool isComplete()
 {
 return Mathf.Abs((blackboard.GetMyPosition() - targetPosition).magnitude) <
(StaticInfo.COMBAT_RANGE / 1.5f);
 }
}

Gamification Quest: *

44

pseudocode for this Action manager appears in Figure 19 and explains the Action Manager

algorithm.

The execute function performs all the scheduling, queue processing, and action execution.

The scheduleAction function simply adds a new action to the queue. The TerminateActive

function get rid of the current active when it is finished or when is interrupted. The

ChangeBehavior function is used for the familiars and change the BT referred in the variable

behavior. It is used when the familiar changes its role.

The Set functions is needed as in the BT Nodes. In order to work correctly, the Action

Manager class has to inherit from the MonoBehaviour class, so the Set function replace the

Constructor of a normal class.

In order to achieve a proper efficiency, the queue variable has to be implemented as a

priority heap. That way the actions are sorted by their priority and when the execute function

checks the queue actions can interrupt when it reaches an action whit less priority than the

currently active, avoiding going over all the queue actions.

45

Figure 19 Action Manager Pseudo-code

class ActionManager

 behavior //Holds the behavior tree used by the character
 sManager //Holds the character Steering Manager
 queue //Holds the schedule actions shorted by priority

 active //The current action
 currentTime //The current time

 void Set()

 //Sets the variables when the Action Manager is initialized

 void scheduleAction(Action)

 //Adds an action to the queue

 void Execute()

 //It is called once per frame and processes the manager tasks

 Update the time

 If there is no active action
 If the queue is empty
 If the BT is not running
 Runs the behavior tree again
 Else
 Do nothing this frame
 Else
 Dequeue an action and set as active

 //Checks for interrupters in the queue

 Foreach Action in the queue
 If the action expiration time exceeds the current time
 Dequeue and destroy the action
 If the action has lower priority that the current active
 Break
 If the action can interrupt
 Terminate current and set the action as active

 //Process the current action

 If active is complete
 Terminate active
 Else
 Execute Activate

 void TerminateActive()

 //Destroy the current action and set active to null

 void ChangeBehaviour(IBehaviour)

 //Changes the character behavior tree

Gamification Quest: *

46

 5.4 Blackboard

As seen so far, the behavior trees are created in a modular way that allows them to be

instantiated in any character which has an action manager and a steering manager.

However, there is another component needed in order to correctly run the character’s IAT.

The widespread characteristic of the behavior trees interferes with the information they

need to run. They need to collect information from the character controller and the

GameObject of it such as its position, its rotation, if it has a target … In order to make it

compatible with any character type, this information has to be stored in some common

structure the BT can access without taking care of which type of character it has.

This structure is called Blackboard and Figure 20 shows the interface of it. These classes

communicate with their characters and brings the BT Nodes the information they need.

Despite its intention of unify all the information it is necessary to distinguish two types of

blackboards, one for enemies and another for the familiar. This is because some variables

will be from different types depending on the character, for example the target variable will

be an IEnemy item when the character is a familiar and an IPlayerGroup item when it is an

enemy or the boss. Furthermore, the behavior trees are already separated in

EnemiesBehaviors and FamiliarBehaviors and each of them needs different information so

treating the blackboards differently fits perfectly.

Figure 20 Blackboard Interface

5.5 Putting all together

Figure 21 shows a complete AI structure for a character using the action manager, the

behavior trees and steering behavior techniques and the blackboard system.

The Character controller holds the Action manager and calls it every frame. The Action

Manager gets its next action from the queue. There is a single Behavior Tree, which is called

whenever the action queue is empty. It takes the information it needs from the Blackboard

which takes it from the character controller. Finally, when an action is executed the output

is a change in the character controller state or an update of the steering manager, which

involve moving the character’s Rigidbody.

public interface IBlackBoard
{
 GameObject GetActionManager();
 PlayerController GetPlayer();
 Vector3 GetPlayerPosition();
 Vector3 GetTargetPosition();
 Vector3 GetMyPosition();
 float GetDetectionRange();

}

47

Figure 21 The complete AI Structure

5.6 Testing & Debugging

 The testing & Debugging of this AI techniques was extremely time-consuming and

complicate. Not only because of the complexity of each technique, but also because of the

interactions between them.

 First the correct implementation of the steering behaviors took quite more time than

the expected. It was pretty complicate to accomplish the stop of the character. At first, when

the seek action was called, the character started to move but when it reached its target and the

action was over the SteeringManager continued to apply forces to the RigidBody, not only

causing the character not to stop, but also accumulating forces into the kinematic. The result

was a complete nonsense movement. Once this bug was fixed, the Steering behavior works

without further issues.

 The implementation of the BT was also very hard to debug. The main issue was that the

nodes worked without any error but the resulting behavior was not the desired. This leads to

redesign the different trees several times until the correct characters’ behavior was achieved,

digging deeply in each node behavior and output.

 The last main issue was the communication between the BT and the action manager.

Due to the performance of the courutines the execution was not really parallel so there were

times were the ActionManager destroyed the current action because it was completed but the

behavior tree does not have time to check if it was. So the execution of the BT was hold trying

to get a response from an action already destroyed. Become aware of this issue was extremely

complicated because it was an issue due to Unity concurrency, not for a code bug.

Gamification Quest: *

48

Chapter 6

Game Art

 In this section the art created for the game is shown, both the 2D and the 3D models.
This work corresponds to the art planning listed in Section 1.7.

6.1 Visual Identity

 As pointed by the project’s objectives, the game has to be integrated within the GQ

application. In order to achieve that the game mechanics have a very important role as explained

before but, from the player’s point of view at least, the visual look of the game is equally

important, even more so. Figure 22 shows a screenshot of the GQ app Main Menu. All the art

created for the game is designed using the same aesthetic and the same techniques in order to

achieve the resemblance. Even some of the sprites used are recycled from the GQ app.

Figure 22 GQ Main Menu Screenshot

49

6.2 2D Elements

 In this section the sprites created for the GUI are listed in Table 13.

Table 13 2D Game’s Elements

Sprite
Code

Sprite Name Sprite Notes

S_01
Stats

Background

Modified from
a GQ Sprite

S_02 Player’s Face

-

S_09
Physical &

Magical
Attack

Combination of
two GQ Sprites

S_11
Formation

Button

Modified from
a GQ Sprite

S_13
Familiars’

Halo

-

S_14 Target

-

6.3 Characters

The only character modeling for the game is the played Avatar. The familiars and the

enemies are made by Marina Granell as she also uses the gamification app in her project.

Figure 23 shows the avatar designs used as blueprint for modeling. The avatar must fit

any type of player so the design does not have to show any distinctive trait.

Gamification Quest: *

50

Figure 23 Avatar's Designs

The avatar 3D model is modeled using primitives for every different part of the body.

Despite the first design of the avatar wears a poncho the final model only has the hood

because the folds of the poncho need a lot of polygons to fit the avatar’s movement and

that amount of polygons is not viable to run the game on a mobile platform. Figure 24 shows

some key points of the avatar’s model.

Figure 24 Avatar's modelling

The final model shown in Figure 25 has a total of 1940 polygons, this amount is perfectly

suited for running in a mobile phone.

51

Figure 25 Avatar's final model

The rigged and the skinned of the avatar is made using the biped system of 3Ds Max and

the envelopes of the skin component. Skinning means to attach the mesh polygons to a

bone. That makes the mesh to move with the bones it is attached during the animations.

Figure 26 Avatar's skinning

The animations are download from the LexLuthor1’s contributions in the forum of

unreal engine [11].

5.4 Environment (I2):

 The game locates inside a dungeon so the environment elements have a dark

aesthetic. The Table 14 shows the different elements created for the project along with their

textures.

Gamification Quest: *

52

Table 14 Environment Elements

Elemen
t Code

Elemen
t Name

Model Render Texture

E_01 Wall

E_02 Ground

 Figure 27 shows the final map of the level with all the rooms of the dungeon.

Figure 27 Dungeon Level

53

Chapter 7

Results

 In this section the result of the work done for the project is summarized. For do it, a list

of elements is presented. Each of the element is evaluated and compare with the initials

objectives of the project enumerate at section 1.

 6.1 Technical Proposal

At the beginning of the project a Technical proposal was delivered with date 12/2. This

document presents a first approach to the project before any work was done and serves as base

for this report’s Chapter 1.

6.2 Game Document Design

The Chapter 3 section of this document is the GDD of the GQ* game which contains all the

specification and design elements of the game. This document and the mechanics detailed inside

it satisfy the design part of the second objective listed on section 1.4: “O2 - Design and

implement fun game mechanics that integrate the use of complex AIT.”

6.3 Technical Report

This same document is another result of the work done. It has a detailed explanation of the

work done for the project together with a technical overview of the game.

6.4 Gamification Quest: *

The implemented game, Gamification Quest: *, is probably the most tangible result of the

project. The application is available at the link and QR code the Figure provides. In order to install

it in your android device you have to allow the installation of apps from unknown sources in the

security related options on the smartphone.

Gamification Quest: *

54

https://drive.google.com/file/d/0B2Vlwmho0tTSbTZUWVFVeWpXYWM/view?usp=sharing

Figure 28 Download code

Figures 29,30, and 31 show several screenshots of the game final result.

Figure 29 Formation Screenshots

Figure 30 Combat Screenshots

Figure 31 Boss Combat Screenshots

In order to summarize the work done for the project, Table 15 shows a final recount of

different elements done for the project

https://drive.google.com/file/d/0B2Vlwmho0tTSbTZUWVFVeWpXYWM/view?usp=sharing

55

Table 15 Project's Item Count

Item Value

scripts 16

code lines About 3750
Images created 10
Models created 2

Game levels 1

6.5 Project Exhibition Video

A video summarizing the game development will be created for the exhibition on 10/6.

Currently in development.

6.6 Project Defense Presentation

For the defense of the video a presentation will be performance. Along with a PowerPoint

it will summarize all the work done for the project.

Gamification Quest: *

56

Chapter 8

Conclusions

 This document has followed all the work done during the Gamification Quest: *

development and in this section the conclusions of the experience are exposed. In first place,

this section value the deviation from the initial proposal of the project with the actual final

result, considering mostly the project’s objectives shown in section 1.4, the project schedule

expose in section 1.7, and the risks listed on section 1.8. In second place, a section considering

possible future development plans.

Project Objectives

Once the project is finished it is time to look to the objectives established at the

beginning of the work and check if the project’s results fulfill them.

 O1 - Implement a video game which takes advantage of the Gamification Quest app.

As can be extracted from the Chapter 3 the mechanics of GQ: * suits in the game-flow

of the Gamification Quest up. The mechanics of both are designed to feed between them

and, together, motivate the student to increase their academic performance.

 O2 - Minimize the use of Unity tools to implement the AIT used on the game, creating

them from scratch whenever possible.

All the AI Techniques used on the project are implemented from scratch mostly.

However, there are two issues where the project falls into Unity tools.

First is the Quaternions system for rotation. Due to my lack of knowledge in the

mathematical aspect of the Quaternions it turns impossible to suit the angle calculations of

the Steering Manager into the Quaternions, demanded for the Transform Component to

apply rotations to the GameObjects.

57

Second is the Unity physics engine. The Steering behaviors indeed calculate from scratch

the force needed to apply to the GameObject to reach its destination, but transform that

force into movement is something that overdue the projects boundaries.

 O3 - Design and implement fun game mechanics that integrate the use of complex AIT.

As seen in Chapter 3 the mechanics designed and implemented for GQ: * are meant to

include the AIT created for the game.

 O4 - Implement the familiars so that they respond in real-time to the player's orders.

The AI techniques implemented allow the familiars to change its behavior according to

the role the player assign to them, and the reactive behavior of the BT allows the characters

to respond to their environment in real time.

Project Deviation

 In Section 1.7 a schedule for the project was exposed. In this section that schedule is

looked over and corrected to reflect the real work done for the project. Table 16 list all the

element named in Section 1.7 with their estimate work hours along with the real time expended

in each task.

Table 16 Project’s Schedule Deviation

Task
ID

Task Name Time
estimation

Time
required

Notes

D_01 Mechanics Design 7 10 -
D_02 Characters Design 17 - Note 1
D_21 3 Familiars Design 10 - Note 1

D_22 4 Enemy Design 7 - Note 1
D_03 Level Design 6 6 -
I_01 Mechanics Implementation 20 24 -

I_11 Character Mechanics 5 9 -
I_12 Enemies Mechanics 5 2 -

I_13 Familiar Mechanics 10 13 -
I_02 Scene Implementation 20 14 -
I_21 Environment 3 3 -

I_22 Camera Movement 2 1 -
I_23 Object System 5 - Not

implemented

I_24 Enemies Respawn 5 - Not
implemented

I_25 User Interface 5 10 -

I_03 Artificial Intelligence
Techniques

80 - Note 2

I_31 Familiars AIT Design 7 - Note 2

I_32 Enemies AIT Design 3 - Note 2
I_33 Familiars AIT Implementation 45 - Note 2
I_34 Enemies AIT Implementation 25 - Note 2

I_04 Testing & Debugging 45 60 -
A_01 Blueprints 14 - Note 1

A_11 Familiar’s Blueprints 6 - Note 1
A_12 Enemies’ Blueprints 8 - Note 1

Gamification Quest: *

58

A_02 Modelling 35 - Note 1

A_21 Familiars’ Modelling 15 - Note 1
A_22 Enemies’ Modelling 20 - Note 1

A_03 Animations 21 - Note 1
A_31 Familiars’ Animations 9 - Note 1
A_32 Enemies’ Animations 12 - Note 1

A_04 Game Integration 10 10 -
Doc_1 Technical Proposal 10 25 -
Doc_2 Game Document Design 10 - Note 3

Doc_3 Final Technical Report 15 60 + 20 Note 3

 Note 1: At the beginning it was schedule that 4 enemies and 3 familiars will be design,

modelling and animated. Finally, I was meant to do the avatar design, modelling and animation.

This change the initial schedule adding new tasks as shown ahead in Table 17.

 Note 2: Due to my lack of knowledge in this subject the tasks needed to do were

completely different to the schedules ones. This is reflected in Table 17 as well.

 Note 3: Initially the game document design and the final technical report was meant to

be different documents but, in order to unify the work done, they result in one document. That

is why the Doc_3 has 40 hours (Doc_3) + 20 hours (Doc_2)

 As seen in the previous notes, new tasks were added to the schedule for the project’s

work. This new tasks, along whit their required time, are shown in table 17.

Table 17 New Schedule tasks

Task Name Time required

AI Techniques research 10

Steering Behaviors Functions 10
Steering Behaviors Manager 2
Behavior Tree Nodes Implementation 20

Behavior Trees Implementation 2
Actions Implementation 15

Action Manager 9
Blackboard Implementation 5
Avatar Design 2

Avatar Modelling 10

 Whit this new schedule the project total hours of work turns to be 365 hours, far ahead

the initial estimated time.

Project Risk

 In Section 1.8 some risks were considered which could have taken down the project

schedule. This section takes a look at these risks and listed the ones that have occurred and the

contention plan used to deal whit them.

59

 The probability pointed in Table 5 was pretty accurate and almost all the risks have

occurred. Fortunately, the data loss hasn't occurred but its contingency plan was carried through

anyway.

 The first risk occurs in some minor tasks, I_23 (Objects system) and I_24 (Enemy

Respawn). The no implementation of these tasks does not affect highly to the project result so

they were put aside.

 The second risk happen too and the containment plan was carry out. The familiar model

is take from Marina Granell project’s since we both work with the GQ app.

 The risks three and five are already considered in the previous section, adding new tasks

to the project’s schedule, one of them the AIT research.

Future Work

 This section considers new horizons for the GQ: * project. In general terms, the time to

devote to the project was short so the first future work to consider is the plenty implement of

all the features mentioned in the game document design.

Integrate the project with the GQ app and implement the mechanics needed to do so is

the next logical future work to do. Once this is accomplished, the whole Gamification Quest

project will be complete but it still has the opportunity and the resources to grow up more.

 As mentioned in the beginning of chapter 5, the AIT implemented for the project has the

capability to perform a lot more complex behaviors so design them and implement the

subsequent actions is something to be considered. Also, due to the modular fashion of all the AI

components, the game has the opportunity of implement another Decision making AI

techniques asides from BT, like Finite state machines, neuronal networks, decision trees, …

Gamification Quest: *

60

Chapter 9

References

[1] Gamification from en.wikipedia.org/wiki/Gamification

[2] ClassDojo from www.classdojo.com/es-ES/

[3] Final Fantasy XIII from http://finalfantasy13game.com/

[4] Final Fantasy XIII Paradigm System from http://finalfantasy.wikia.com/wiki/Paradigm

[5] VJ1241 Teaching Guide from

https://eujier.uji.es/pls/www/gri_www.euji22883_html?p_curso_aca=2016&p_asignatura_id=

VJ1241&p_idioma=CA&p_titulacion=231

[6] Artificial Intelligence for Games (2nd edition), by Ian Millington and John Funge. Elsevier,

2009. Chapter 5 Decision Making Available online:

http://www.sciencedirect.com/science/book/9780123747310

[7] Unity Answer Forum: Threading in Unity , from

http://answers.unity3d.com/questions/180243/threading-in-unity.html

[8] Unity Documentation: Coroutines from https://docs.unity3d.com/Manual/Coroutines.html

[9] Unity Documentation: MonoBehaviour from

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

[10] Unity Answer Forum: new MonoBehaviour from

http://answers.unity3d.com/questions/653904/you-are-trying-to-create-a-monobehaviour-

using-the-2.html

[11] Unreal Forum : Character Animations download from

https://forums.unrealengine.com/showthread.php?1501-Free-Character-animations-in-bip-

and-FBX-Download

http://www.classdojo.com/es-ES/
http://finalfantasy13game.com/
http://finalfantasy.wikia.com/wiki/Paradigm
https://eujier.uji.es/pls/www/gri_www.euji22883_html?p_curso_aca=2016&p_asignatura_id=VJ1241&p_idioma=CA&p_titulacion=231
https://eujier.uji.es/pls/www/gri_www.euji22883_html?p_curso_aca=2016&p_asignatura_id=VJ1241&p_idioma=CA&p_titulacion=231
http://www.sciencedirect.com/science/book/9780123747310
http://answers.unity3d.com/questions/180243/threading-in-unity.html
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://answers.unity3d.com/questions/653904/you-are-trying-to-create-a-monobehaviour-using-the-2.html
http://answers.unity3d.com/questions/653904/you-are-trying-to-create-a-monobehaviour-using-the-2.html
https://forums.unrealengine.com/showthread.php?1501-Free-Character-animations-in-bip-and-FBX-Download
https://forums.unrealengine.com/showthread.php?1501-Free-Character-animations-in-bip-and-FBX-Download

61

Appendix A
Sound Design Document by Victor Avila

La banda sonora Gamification Quest ha sido compuesta para trasladar al jugador

al mundo de fantasía con toques medievales que se plantea en el juego. Para ello se

decidió optar por unas melodías definidas desde un principio y ritmos bien marcados,

dando dinamismo a las partidas.

Elegimos temas inspirados en obras populares medievales, tanto en sus armonías

como en los procesos rítmicos, y por la estética del juego optamos por temas alegres

a medios tiempos intercalando melodías menores, dando citas a los enemigos que vas

a encontrarte en todo el camino

Tenemos claro que el soporte del juego son teléfonos o tablets, es por ese motivo

que adaptamos las sonoridades a estos dispositivos, pero cuidando al máximo la

calidad de las bibliotecas de sonidos utilizando, llegando a rediseñar cada sonido

utilizado para que casen perfectamente unos con otros, y no suene excesivamente

artificial.

Cada sonido incidental utilizado ha sido diseñado específicamente para que el

jugador, conciba la acción del juego tanto visualmente como auditivamente, pasos,

magias etc.

En resumen, esta banda sonora ha sido un resultado del trabajo conjunto entre

historia, jugabilidad y estética del juego, ofreciendo una experiencia tanto divertida

como adictiva en el plano sonoro.

