
Week 4 - Manipulation
(http://www.mobilerobots.com/Accessories
/PioneerGripper.aspx) Robots
(https://en.wikipedia.org/wiki/Robot) have been
historically classified in mobile robots
(https://en.wikipedia.org/wiki/Mobile_robot) and
manipulators (https://en.wikipedia.org
/wiki/Industrial_robot).

Nowadays, manipulation devices are available
for many mobile platforms, including ground,
underwater and aerial vehicles. The Pioneer is
an indoor mobile platform that can be optionally
equiped with a simple yet effective manipulator
device.

In this module, you will learn to control the robot gripper, and program a task for autonomously grasping an
object, an carrying it to a predefined destination.

Gripper (Gripper.ipynb)
Searching Ball (Searching.ipynb)
Grasping (Grasping.ipynb)
Searching Target (Searching%20Target.ipynb)
Complete Manipulation Task (Complete%20Task.ipynb)

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

default http://54.171.69.248:8888/notebooks/default.ipynb

1 of 1 02/21/2017 11:57 AM

MOOC Autonomous Mobile Robots Week 4

The Gripper
(http://www.mobilerobots.com
/Accessories/PioneerGripper.aspx)
Grippers are robot end-effectors
(https://en.wikipedia.org
/wiki/Robot_end_effector) designed
for grasping objects.

They are frequently used in robot
manipulators, but they can
nevertheless be attached to mobile
platforms too, like the Pioneer robot.

In this case, the gripper is a 2-axis, 2 degree-of-freedom (dof) mechanism. It opens and closes
horizontally, and raises up to carry the grasped object off the floor. The gripper paddles close together
horizontally until they grasp an object or close on themselves.

In this notebook, we will use a GUI widget for manually controlling the gripper and getting familiar with it.

In []:

First, the GUIs for moving the robot and the Kinect.

In []:

In []:

Next, a new GUI widget for controlling the two degrees of freedom of the gripper: lifting and
opening/closing the fingers.

In []:

Alternatively, you can call the code function for setting the values for the gripper:

In []:

where lift varies in an interval of -0.05 (up) to 0.05 (down) meters, and fingers varies in an interval of
0.0 (closed) to 0.1 (open) meters.

The task

You should teleoperate the robot with the previous GUI widgets for grasping the blue ball.

Use both the simulator window and the camera window for visual feedback.

In the following notebooks, the aim will be to program the robot for automatically doing this same task.

In []:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

import motion_widget

import tilt_widget

import gripper_widget

lift = 0.0
fingers = 0.05
p3dx.gripper(lift,fingers)

%matplotlib inline

Gripper http://54.171.69.248:8888/notebooks/Gripper.ipynb

1 of 2 02/21/2017 11:58 AM

In []:

In []:

Next: Searching the Ball (Searching.ipynb)

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

import matplotlib.pyplot as plt

plt.imshow(p3dx.image);
Click here and press Ctrl+Enter to refresh the image

Gripper http://54.171.69.248:8888/notebooks/Gripper.ipynb

2 of 2 02/21/2017 11:58 AM

Searching
(http://www.hongkiat.com/blog/danbo-amazon-cardboard-robot-photos/)
The first step of the manipulation task is searching for the object (the
blue ball) and moving the robot near to it, so that the ball fits between
the gripper fingers.

This task is very similar to the visually-guided line-following task, since
the ball is brightly colored and it can be segmented
(https://en.wikipedia.org/wiki/Image_segmentation) from the
background with some simple image processing operations. Then, the
robot can be controlled for approaching the ball.

A possible algorithm would be:

1. open the gripper and tilt the kinect for searching the ball
2. turn the robot until the ball is centered in the camera image
3. move the robot forward until the ball is near the bottom of the imag
e

First, let's initialize the robot.

In [2]:

Colored blob detection

We already know how to locate a colored blob (the line in the previous week, the ball now) in the image,
thanks to its centroid, which is computed from the image moments. But we should also consider the case
that the ball is not visible in the image. One solution is checking the area of the blob, which is given by

, and returning the centroid values only if the area is greater than zero.

Let's define a function named color_blob for computing the area and centroid of a colored blob. If the
blob is not detected, the area will be zero, and the centroid coordinates will be None (the Python value for
null). This function is an improved version of the code used for the line following task.

In [1]:

Step 1: initial position
Open the gripper and tilt the kinect for searching the ball: the fingers should be wide open, the gripper
down close to the ground, and the kinect should be tilted properly for searching throughout the room.

In [16]:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

import cv2
def color_blob():

hsv = cv2.cvtColor(p3dx.image, cv2.COLOR_RGB2HSV)
mask = cv2.inRange(hsv, lower, upper)
M = cv2.moments(mask)
area = M['m00']
if area > 0:

cx = int(M['m10']/area)
cy = int(M['m01']/area)

else:
cx = None
cy = None

return area, cx, cy

p3dx.gripper(0.05,0.1)
p3dx.tilt(-0.35)

Searching http://54.171.69.248:8888/notebooks/Searching.ipynb

1 of 5 02/21/2017 12:01 PM

In a good configuration, the top plate of the robot would be only slightly visible at the bottom of the image,
and the walls of the room should be visible too (that is the robot should not be neither looking too much to
the floor, nor to the ceiling). You may check the image in the next cell, and change the above parameters if
necessary, until the result is satisfactory.

In [17]:

Step 2: turning
We are going to use a while loop for turning the robot, which will stop when the blob is detected and its
coordinates are approximately in the center of the image. Most of the code is given in the next cell, but you
must figure out some values.

First, since the color of the ball is blue, you need to find out its proper hue value (please
remember that the hue range in OpenCV scales from 0 to 180).

In [21]:

Next, you should choose the interval for considering the blob as centered.

In [31]:

Finally, you must provide the velocity values for turning.

In [19]:

Again, you can check the result:

%matplotlib inline
import matplotlib.pyplot as plt
plt.imshow(p3dx.image);

import numpy
lower = numpy.array([110, 100, 100])
upper = numpy.array([130, 255, 255])

def is_blob_centered():
area, cx, cy = color_blob()
if area > 0 and cx >= 70 and cx < 80:

return True
else:

return False

while not is_blob_centered():
p3dx.move(-0.5,0.5)

p3dx.stop()

Searching http://54.171.69.248:8888/notebooks/Searching.ipynb

2 of 5 02/21/2017 12:01 PM

In [20]:

Step 3: approaching
As the robot moves forward and approaches to the ball, the position of the ball in the image will go down.

We can define a threshold for stopping the robot before the ball goes out of the image. The code is very
similar to the previous step.

In [33]:

In [25]:

Let's check the result:

In [27]:

Area: 17850, cx: 78, cy: 24

plt.imshow(p3dx.image)
print('Area: %d, cx: %d, cy: %d' % color_blob())

def is_blob_close():
area, cx, cy = color_blob()
if area > 0 and cy >= 90:

return True
else:

return False

while not is_blob_close():
p3dx.move(1.0,1.0)

p3dx.stop()

plt.imshow(p3dx.image);

Searching http://54.171.69.248:8888/notebooks/Searching.ipynb

3 of 5 02/21/2017 12:01 PM

Additional step: fine motion
If the ball is not between the fingers yet, you need to move the robot closer. This can be done in open
loop, but this is prone to errors. A better option is to tilt the kinect lower, and repeat a new iteration of the
centering and approaching steps.

In []:

In [32]:

In [34]:

In [35]:

Next: Grasping (Grasping.ipynb)

p3dx.tilt(-0.47)

while not is_blob_centered():
p3dx.move(-0.5,0.5)

p3dx.stop()

while not is_blob_close():
p3dx.move(1.0,1.0)

p3dx.stop()

plt.imshow(p3dx.image);

Searching http://54.171.69.248:8888/notebooks/Searching.ipynb

4 of 5 02/21/2017 12:01 PM

Grasping
Assuming that the robot is well positioned, the grasping task is straightforward:

1. close fingers
2. lift gripper

Not every task requires a lot of code! ;-)

In [1]:

Close fingers

In [2]:

Lift gripper

In [3]:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

p3dx.gripper(0.05,0.0)

p3dx.gripper(-0.05,0.0)

Grasping http://54.171.69.248:8888/notebooks/Grasping.ipynb

1 of 3 02/21/2017 12:04 PM

Searching the Target
The target is a red disk on the floor. The robot should approach the disk, and gently leave the ball on top of
it.

In []:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

You can use the same strategy for searching the disk, since it can also be detected by color (in this case,
red).

In fact, the code for the segmentation function is exactly the same (only the lower and upper values will
change).

In []:

import cv2
def color_blob():
 hsv = cv2.cvtColor(p3dx.image, cv2.COLOR_RGB2HSV)
 mask = cv2.inRange(hsv, lower, upper)
 M = cv2.moments(mask)
 area = M['m00']
 if area > 0:
 cx = int(M['m10']/area)
 cy = int(M['m01']/area)
 else:
 cx = None
 cy = None
 return area, cx, cy

These are the values for segmenting red pixels in the image.

In []:

import numpy
lower = numpy.array([0, 100, 100])
upper = numpy.array([10, 255, 255])

In []:

p3dx.tilt(0.0)

In []:

%matplotlib inline
import matplotlib.pyplot as plt
plt.imshow(p3dx.image);

Turning
The following code is exactly the same as that used in the search for the ball. The robot will turn until the
target is centered in the image.

In []:

def is_blob_centered():
 area, cx, cy = color_blob()
 if area > 0 and cx >= 70 and cx < 80:
 return True
 else:
 return False

In []:

while not is_blob_centered():
 p3dx.move(-0.5,0.5)
p3dx.stop()

In []:

plt.imshow(p3dx.image);

Approaching
Copy and paste the code from the appraoch step of the ball-searching notebook.

In []:

def ...

In []:

while ...

In []:

plt.imshow(p3dx.image);

Fine adjustment
Again, it might be necessary an additional step for finely reaching the final position. Usually, only translation
is necessary, no need for rotation.

In []:

p3dx.tilt(-0.47)

In []:

while not is_blob_close():
 p3dx.move(1.0,1.0)
p3dx.stop()

In []:

plt.imshow(p3dx.image);

 Releasing the ball
Copy and paste the statements from the grasping notebook that lower the gripper and open the fingers.
Finally move the robot backwards.

In []:

p3dx.gripper(...)

In []:

p3dx.gripper(...)

In []:

p3dx.move(-1.0,-1.0)
p3dx.sleep(3)
p3dx.stop()

Next: Complete Manipulation Task (Complete%20Task.ipynb)

Try-a-Bot: an open source guide for robot programming

Developed by:
Robotic Intelligence Lab @ UJI

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com/RobotProgrammingNetwork) (https://www.youtube.com/user/robotprogrammingnet)

http://robinlab.uji.es/
http://www.ieee-ras.org/
http://www.cyberbotics.com/
http://www.theconstructsim.com/
https://www.facebook.com/RobotProgrammingNetwork
https://www.youtube.com/user/robotprogrammingnet

Complete Manipulation Task
Let's put everything together for the autonomous execution of the whole task.

In []:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

Helper functions

In []:

import cv2
import numpy

def color_blob():
 hsv = cv2.cvtColor(p3dx.image, cv2.COLOR_RGB2HSV)
 mask = cv2.inRange(hsv, lower, upper)
 M = cv2.moments(mask)
 area = M['m00']
 if area > 0:
 cx = int(M['m10']/area)
 cy = int(M['m01']/area)
 else:
 cx = None
 cy = None
 return area, cx, cy

In []:

def is_blob_centered():
 area, cx, cy = color_blob()
 if area > 0 and cx >= 70 and cx < 80:
 return True
 else:
 return False

In []:

def is_blob_close():
 area, cx, cy = color_blob()
 if area > 0 and cy >= 90:
 return True
 else:
 return False

Search ball

Copy and paste the necessary code from previous notebooks for these subtasks:

locate ball
approach to the ball
pick the ball

In []:

lower = numpy.array([110, 100, 100])
upper = numpy.array([130, 255, 255])

In []:

In []:

In []:

In []:

Search target

Same for the target:

locate target
approach to the target
release the ball

In []:

lower = numpy.array([0, 100, 100])
upper = numpy.array([10, 255, 255])

In []:

In []:

In []:

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

Complete Task http://54.171.69.248:8888/notebooks/Complete Ta...

3 of 3 02/21/2017 12:10 PM

