
Week 3 - Vision

Vision is perhaps the most powerful
sense in humans, providing a huge
amount of information about the
environment, and enabling rich and
intelligent interaction.

In this module, we present the
fundamentals of computer vision and
image processing for a locomotion task:
the robot will follow a line on the ground
using a camera.

Acquiring Images (Acquiring%20Images.ipynb)
Image Processing (Image%20Processing.ipynb)
Line Detection (Line%20Detection.ipynb)
Line Following (Line%20Following.ipynb)
Line Following with Obstacle Avoidance (Line%20Following%20Obstacle.ipynb)

This module is based on Chapter 12 (Follow-Bot) of Programming Robots with ROS by Morgan Quigley,
Brian Gerkey, and William D. Smart (http://wiki.ros.org/Books/Programming_Robots_with_ROS).

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

default http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

1 of 1 02/21/2017 10:29 AM

MOOC Autonomous Mobile Robots Week 3

Acquiring Images

Image acquisition is the first stage of any vision
system. It consists of the action of retrieving an
image from some source (usually a camera
device) and storing it in the computer for further
processing.

In this course, a Kinect sensor is mounted on the

Pioneer robot. This is a camera device that captures not only color but also depth. However, we are only
going to use the color information.

In this notebook, you will move the robot around and learn how to capture and display an image.

First, as usual, we will initialize the robot.

In []:

Next, we need to import the plotting libraries for displaying the images.

In []:

The motion GUI widget allows you to move the robot around.

In []:

Tilting

The Kinect sensor features a motorized tilt mechanism, which is capable of tilting the sensor up to 27º
either up or down (approximately 0.47 radians).

The next GUI widget controls the tilt angle of the simulated Kinect.

In []:

Acquisition and Display

Finally, the image is automatically stored in a variable that can be passed to the image plot function:

In []:

The image is stored as a numpy array (http://www.scipy-lectures.org/intro/numpy/array_object.html), which
is very similar to a Matlab/Octave array.

For example, its dimensions can be obtained with:

In []:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

%matplotlib inline
import matplotlib.pyplot as plt
REMINDER: this cell may take some seconds to execute the first time

import motion_widget

import tilt_widget

plt.imshow(p3dx.image);
Click here and press Shift+Enter to refresh the image

p3dx.image.shape

Acquiring Images http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

1 of 2 02/21/2017 11:07 AM

This result indicates that the image consists of 100 rows and 150 columns of RGBA
(https://en.wikipedia.org/wiki/RGBA_color_space) pixels.

Next: Image Processing (Image%20Processing.ipynb)

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

Acquiring Images http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

2 of 2 02/21/2017 11:07 AM

Image Processing

(http://opencv.org/) In this module, we will use OpenCV (http://opencv.org/) in Python to
process the images coming through the camera from the simulated Pioneer 3DX.

OpenCV (Open Source Computer Vision) is a library of programming functions mainly
aimed at real-time computer vision.

In our task, the goal is to detect the location of the target line and follow it around the
course. There are many strategies that can be used for that purpose, whose complexity increases with
variability and noise. In our case, we are just going to consider an optimally painted, optimally illuminated
bright cyan line.

The strategy will be to filter a block of rows of the image by color and drive the robot toward the center of
the pixels that pass the color filter.

First, we initialize the robot, launch the widgets, and display the camera image.

In []:

In []:

In []:

In []:

In []:

Color Filtering

(https://en.wikipedia.org/wiki/HSL_and_HSV) The first
idea would be to find the red, green, blue (RGB) values of
a cyan image pixel and filter for nearby RGB values.
Unfortunately, filtering on RGB values turns out to be a
poor way to find a particular color in an image, since the
raw values are a function of the overall brightness as well
as the color of the object. Slightly different lighting
conditions would result in the filter failing to perform as
intended.

Instead, a better technique for filtering by color is to
transform RGB images into hue, saturation, value (HSV)
(https://en.wikipedia.org/wiki/HSL_and_HSV) images. The HSV image separates the RGB components
into hue (color), saturation (color intensity), and value (brightness). Once the image is in this form, we can

then apply a threshold for hues near cyan to obtain a binary image in which pixels are either true (meaning
they pass the filter) or false (they do not pass the filter).

In []:

In []:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

%matplotlib inline
import matplotlib.pyplot as plt

import motion_widget

import tilt_widget

plt.imshow(p3dx.image);

import cv2
import numpy

hsv = cv2.cvtColor(p3dx.image, cv2.COLOR_RGB2HSV)

Image Processing http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

1 of 2 02/21/2017 11:08 AM

The cyan color (http://www.colorhexa.com/00ffff) has a hue angle of 180 degrees (of 360), a saturation of
100% and a value of 100%. However, since OpenCV uses a different scale (H: 0 - 180, S: 0 - 255, V: 0 -
255), the cyan hue angle will be 90 units.

In real lighting conditions, colors are not defined by single values, but by intervals, so we will use an
interval of units around the central value.

Since the illumination is not extremely bright, the thresholds for saturation and value are set to 100.

In []:

The mask is computed by the OpenCV function inRange (http://docs.opencv.org/2.4/modules/core/doc
/operations_on_arrays.html#inrange).

In []:

In []:

Next: Line Detection (Line%20Detection.ipynb)

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

±10

lower_cyan = numpy.array([80, 100, 100])
upper_cyan = numpy.array([90, 255, 255])

mask = cv2.inRange(hsv, lower_cyan, upper_cyan)

plt.imshow(mask,cmap='gray');

Image Processing http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

2 of 2 02/21/2017 11:08 AM

Line Detection

The result of image processing was a binary image, or
mask, with the pixels that belong to the line, i.e. the
cyan-colored pixels.

For driving the robot, we need to compute some value
relating the position of the robot to the line in the
ground. In this task, it is sufficient to keep the line
centered in the image. For more complex tasks, there
are algorithms that compute the geometrical
parameters of the line image, and its 3D reconstruction
in real space.

Our method is far simpler: we consider the line as a blob in the image, whose image moments

(http://aishack.in/tutorials/image-moments/) can be computed, particularly its centroid
(https://en.wikipedia.org/wiki/Image_moment#Central_moments). That information will be used for later
driving the robot appropriately.

Image Acquisition

In []:

In []:

In []:

In []:

In []:

Image Processing

In []:

In []:

Computing the Centroid

We use here some heuristics: first, the Kinect should tilt down for observing the line close to the robot, not
far away; second, we will only consider the bottom part of the line for computing the image moments;
doing so will prevent the robot to turn before it actually arrives to the curve. In practice, we will set all the
pixels to black (zeros) for the lines between 0 and 80.

In []:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

%matplotlib inline
import matplotlib.pyplot as plt

import motion_widget

import tilt_widget

plt.imshow(p3dx.image);

import cv2
import numpy

hsv = cv2.cvtColor(p3dx.image, cv2.COLOR_RGB2HSV)
lower_cyan = numpy.array([80, 100, 100])
upper_cyan = numpy.array([100, 255, 255])
mask = cv2.inRange(hsv, lower_cyan, upper_cyan)
plt.imshow(mask,cmap='gray');

mask[0:80, 0:150] = 0
plt.imshow(mask,cmap='gray');

Line Detection http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

1 of 2 02/21/2017 11:09 AM

Finally, we compute the moments, the centroid (https://en.wikipedia.org
/wiki/Image_moment#Central_moments), and display the original image, with a red circle at the position of
the centroid of the computed blob. If the result is correct, the circle should be centered on the bottom of
the cyan line.

In []:

Next: Line Following (Line%20Following.ipynb)

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

M = cv2.moments(mask)
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
plt.imshow(p3dx.image)
axes = plt.gca()
axes.add_artist(plt.Circle((cx,cy),10,color='r'));

Line Detection http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

2 of 2 02/21/2017 11:09 AM

Line Following

Up to now, we have worked up a line detection algorithm. Now that this scheme is
up an running, we can move on to the task of driving the robot such that the line
stays near the center of the camera image.

We propose to use a proportional controller (https://en.wikipedia.org
/wiki/Proportional_control), which means that a linear scaling of an error drives the
control output. In this case, the error signal is the distance between the center of
the image and the center of the line that we are trying to follow. The control output is the steering (angular
velocity) of the robot.

In [1]:

In [2]:

Image processing

Fill in the necessary code in the following function, which computes the centroid of the line of the image
passed as an argument, as explained in the previous notebook.

In [4]:

We need the code for the motion of the robot with the given linear and angular velocities, as in previous
modules.

In [5]:

Main loop

This is the main control loop. The error should be computed as:

where is the -coordinate of the centroid, and is the width of the image.

The linear velocity is constant, e.g. and the angular velocity is computed as:

where is the gain of the proportional controller, which can be set to .

err = −Cx
width

2
Cx x width

2m/s ω

ω = − errKp

Kp 0.01

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

import cv2
import numpy

def line_centroid(image):
...
return cx, cy

def move(V_robot,w_robot):
r = 0.1953 / 2
L = 0.33
w_r = (2 * V_robot + L * w_robot) / (2*r)
w_l = (2 * V_robot - L * w_robot) / (2*r)
p3dx.move(w_l, w_r)

Line Following http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

1 of 2 02/21/2017 11:10 AM

In []:

Next: Line Following with Obstacle Avoidance (Line%20Following%20Obstacle.ipynb)

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

p3dx.tilt(-0.47) # tilt down the Kinect
try:

width = ...
while True:

cx, cy = line_centroid(p3dx.image)
err = ...
linear = ..
angular = ...
move(linear, angular)

except KeyboardInterrupt:
move(0,0)

Line Following http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

2 of 2 02/21/2017 11:10 AM

Line Following with Obstacle Avoidance

The final task of this week is a combination of the line following, obstacle detection, and wall following
behaviors.

The robot should follow the line until an obstacle is detected in its path. Then, the robot will turn right and
follow the wall at its right until the line is detected again, and it will resume the line following behavior.

Please watch the following demo video:

In []:

This is the most complex task that we have programmed so far, thus it is a nice candidate for developing
with the so-called top-down approach (https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design).
With this methodology, we start with a high-level algorithm, and break it down into its components:

repeat forever
 follow line until an obstacle is detected
 get close to the wall
 follow wall until a line is detected
 get close to the line

Initialization

First, we need to import all the required modules.

In []:

Component functions

The first function must return True if an obstacle is detected in front of the robot, or False otherwise.

In []:

The second function is the line following behavior as seen in previous notebooks during this week.

In []:

The next function was developed in the previous week: the robot turns until it is approximately parallel to
the wall.

In []:

from IPython.display import YouTubeVideo
YouTubeVideo('Jd1jpt3pgc8')

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()
import cv2
import numpy

def is_obstacle_detected():
...

def follow_line():
print('Following the line')
while not is_obstacle_detected():

...
print('Obstacle detected')

def getWall():
...

Line Following Obstacle http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

1 of 3 02/21/2017 11:16 AM

The next function is checked during the wall following behavior: it must return True when the line is again
detected, or False otherwise.

In []:

Next, we reuse the wall following behavior from previous week.

In []:

Finally, a function is needed for turning the robot slightly until it is approximately parallel to the line again.

In []:

Some additional lower-level functions are required (guess which ones?).

You can define them in the next empty cell.

In []:

Main loop

The main loop looks very similar to the proposed algorithm:

In []:

Did it work? Congratulations, you have completed the task of this week!

def is_line_detected():
...

def follow_wall():
print('Following the wall')
while not is_line_detected():

...
print('Line detected')

def getLine():
...

Lower-level functions
...

p3dx.tilt(-0.47)
try:

while True:
follow_line()
getWall()
follow_wall()
getLine()

except KeyboardInterrupt:
move(0,0)

Line Following Obstacle http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

2 of 3 02/21/2017 11:16 AM

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

Line Following Obstacle http://54.154.38.93:8888/notebooks/uji_amr_3/ipy...

3 of 3 02/21/2017 11:16 AM

