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ABSTRACT 

Multimodal light-harvesting soft systems able to absorb UV-to-NIR radiations and convert into 

visible emissions have drawn much attention in the last years in order to explore new areas of 

application in energy, photonics, photocatalysis, sensors and so forth. Here, we present a new 

hybrid system combining a supramolecular photonic gel of naphthalimide-derived molecules 

self-assembled into fibers and upconverting NaYF4:Yb/Tm nanoparticles (UCNPs). The hybrid 

system presented here manipulates light reversibly as a result of an optical communication 

between the UCNPs and the photoactive gel network. Upon UV irradiation, the system shows the 

characteristic emission at 410 nm from the photoactive organomolecule. This emission is also 

activated upon 980 nm excitation thanks to an efficient energy transfer from the UCNPs to the 

fibrillary network. Interestingly, the intensity of this emission is thermally regulated during the 

reversible assembly or disassembly of the organogelator molecules, in such a way that gelator 

emission is only observed in the aggregated state. Additionally, the adsorption of the UCNPs 

with the supramolecular gel fibers enhance their emissive properties, a behavior ascribed to the 

isolation from solvent quenchers and surface defects, as well as an increased IR light scattering 

promoted by the fibrillary network. The reported system constitutes a unique case of a thermally 

regulated, reversible, dual UV and IR light harvesting hybrid soft material. 
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INTRODUCTION 

Supramolecular gels based on self-assembled fibrillary networks are soft materials with 

significant advantages when compared to polymeric analogues such as intrinsic reversibility, 

stimuli responsiveness and superior biocompatibility.
1-4

 The increasing attention paid to 

supramolecular gels is related to their applicability as new soft materials in areas such as 

molecular electronics, controlled release, tissue engineering or catalysis among others.
2-7

 Several 

approaches have addressed the inclusion of photonic functionalities into supramolecular gels.
8
 

For example, gels with chromophore units have been used as photocatalysts
9,10

 and excitation 

energy transfer has been studied in supramolecular gels formed by photoactive fibers which 

contained entrapped dyes.
11-15

 Recently, we reported orthogonal fibrillization of two fluorescent 

supramolecular gelators.
16

 Additionally, supramolecular gels have been used as photon 

upconversion matrixes based on the triplet-triplet-annihilation mechanism via organic 

molecules.
17,18

 Some studies have been also devoted to hybrid systems of noble (Ag and Au) 

metallic nanoparticles NPs and supramolecular networks.
19

 In this case, supramolecular gels act 

as scaffold to support the NPs
20-22

 which in some of cases were prepared in situ,
23-26

 and can find 

application as antibacterial soft materials
26-29

 or catalysts.
30

 Some studies have evaluated the 

influence of the molecular gel network in the photoluminescence of NPs.
31-34

 Core/shell 

semiconductor nanocrystals of CdSe/ZnS, or quantum dots (QDs), have been incorporated into 

molecular gels affording an improvement in emission quantum yields
35

 and have been used as 

sensors of nitric oxide.
36

 

In this work, a soft hybrid system based on IR light upconverting NaYF4:Yb/Tm nanoparticles 

(UCNPs) and a fluorescent supramolecular network containing naphthalimide-derived molecules 

is described. Bulk upconverting lanthanide-based crystals have been known for decades but there 
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has been a resurgence of their study associated to the preparation of upconverting nanoparticles 

(UCNPs) about one decade ago.
37,38

 Manipulation of IR radiation using UCNPs has been found 

to be of much interest because the UV-VIS output can be used to promote several chemical 

processes or to develop a number of applications in the fields of lighting and displays, energy, 

photocatalysis, sensing, bioanalytics and theranostics.
39-45

 Up to our knowledge, only two reports 

concerning the inclusion of UCNPs in self-assembled organogels are available in the literature. 

UCNPs could be dispersed in a supramolecular gel matrix formed by a peptide derivative, 

reinforcing the gel structure.
46

 However, the gel matrix was acting as a passive scaffold. In 

another report, a photoactive supramolecular gel formed by a derivative of trans-stilbene 

experienced energy transfer from UCNPs.
47

 Unlike the results reported here, the reversibility of 

the hybrid gel was not studied and the emission of gelator overlapped with that of the UCNPs. In 

this work, there is an optical communication between the UCNPs and the organic chromophore, 

and the light manipulation process is found to be fully reversible and associated to the 

assembly/disassembly of the gel. Furthermore, the gel provides with much improved stability 

towards aggregation to the UCNPS. 

EXPERIMENTAL SECTION 

The synthesis of the hybrid supramolecular gel is fully described in the Supporting Information 

file (SI). In a typical procedure, the organogelator molecule (labelled as compound 1) and the 

upconverting NaYF4:Yb/Tm nanoparticles (20%-Yb and 0.5%-Tm molar ratio replacing yttrium 

ions in the lattice, labelled as UCNPs) were first prepared. The hybrid system (UCNPs-1gel), 

was prepared as follows: 20 mg of UCNPs were suspended in 2 mL of butanol and sonicated for 

5 min in a screw-capped vial. Then, 6 x 10
-3

 mmol of compound 1 were added and the closed 

system heated to 80 ºC until it was completely solubilized. The system was left cool down until 
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room temperature for 10 minutes and the hybrid gel was formed. The samples were prepared in 

cylindrical glass vials with different sizes, and the gel dimensions ranged from 10-15 mm 

diameter x 5-20 mm height. 

The characterization by high-resolution transmission electronic microscopy (HRTEM) was 

carried out on a JEOL- 2100 LaB6 microscope, at an accelerating voltage of 200 kV, with an 

Inca Energy TEM 200 (Oxford) energy dispersive x-ray spectroscope (XEDS). The gel samples 

were deposited over Ni grids coated with a carbon film before TEM observation. The absorption 

spectra were measured on a Cary 500 Scan UV-VIS-NIR spectrophotometer (Varian) equipped 

with an integrating sphere. The upconversion spectra were measured using an infrared laser 

diode (model RLTMDL-980-2W, Roithner LaserTechnik, 980 nm ± 5nm, 2 W continuous 

waveform, stability <5%, laser head 141x46x73 nm) as the pump source. The emission spectra 

were measured at 1 W output with a focus lens, providing 105 Wcm
-2

 optical power density on 

the sample. A StellarNet EPP2000-UV-VIS spectrometer was employed for the fluorescence 

detection in the visible region. Additional experiments on the hybrid system were carried out in a 

transparent cuvette using the setup shown in SI using a spectrofluorimeter JASCO FP-8300. 

 

RESULTS AND DISCUSSION 

Compound 1 (see Figure 1) is a low molecular weight gelator derived from 1,8-naphthalimide 

chromophore. When compound 1 is dissolved in a hot solution of butanol and the clear solution 

is left to cool down to room temperature, supramolecular gels are formed. The minimum 

concentration required for gelation (mgc) was 5 mM with a transition from gel to solution (Tgel) 

taking place at 65 ºC using a vial inversion test. Transmission electron microscopy of the xerogel 

revealed the usual entanglement of fibers observed commonly in supramolecular gels (Figure S1, 
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Figure S1 from Supporting Information file). The 1,8-naphthalimide unit introduced in the 

gelator is a well-known fluorophore,
48

 presenting light absorbance at max = 335 nm and 

emission at max = 410 nm (see Figure 1 and Figure S2). NaYF4:Yb
3+

/Tm
3+

 upconverting 

nanocrystals (UCNPs) prepared following a simple solvothermal procedure (See SI)
49

 produce 

different emissions with maximum intensity at wavelengths of 345, 355, 450, 475 and 650 nm 

(Figure 1) upon excitation at 980 nm. The hybrid system UCNPs-1gel was designed in such a 

way that the absorption of the gelator overlaps with the two emission bands of the UCNPs 

located at ca. 350 nm (Figure 1), and an energy transfer from the UCNPs to the chromophoric 

residue could take place (see adapted Jablonsky diagram at Figure S8). 

 

 

Figure 1. Overlaid absorption spectrum of compound 1 in butanol (dotted line) and emission 

spectrum of UCNPs (exc = 980 nm, 105 Wcm
-2

 optical power density). 

Examination of the fluorescent properties of the pure gel formed by compound 1 revealed a 

strong aggregation induced emission effect upon excitation with 335 nm light.
50

 It means that 

when the gel is heated from 20 ºC to 80 ºC a dramatic decrease of the 410 nm emission is 
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observed, associated to a progressive gel disassembly (Figure 2). This behavior is opposite to 

that observed by a 4-amino-1,8-naphthalimide analogue which was studied by us recently.
16

 

Under 980 nm excitation, the pure gel did not exhibit any emission. 

 

Figure 2. Variable temperature study of the emission spectra of the gel of compound 1 

(exc=335nm). Intensity at max is normalized to 1 for the spectrum at 20 ºC. 

The hybrid system containing the UCNPs within the fibrillary network has a good 

translucent/transparent (depending on the concentration of UCNPs and the cooling rate of the 

gel) appearance. Figure 3 left shows the picture of the hybrid UCNPs-1gel under natural, UV and 

NIR light. Electron microscopy revealed that the hybrid material is formed by thin self-

assembled fibers isolated and well-dispersed UCNPs mostly stacked at the surface of the fibers 

(Figure 3 right). It could be argued that the solvophobic oleic acid units covering the UCNPs 

provide anchorage points to the surface of the fibers as described, for example, for the interaction 

with polymers.
51,52
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Figure 3. Left) Pictures of the hybrid UCNPs-1 gel under natural light, UV lamp excitation and 

980nm laser irradiation. Rigth) Transmission electron microscopy image of the hybrid UCNPs-1 

gel. 

Next, the emission of UV-Vis light upon irradiation of the UCNP-loaded gels with 980 nm IR 

light was studied. It was found that the emission of the UCNPs at ca. 350 nm disappears and the 

emission band at 410 nm emerges (Figure 4). This is a consequence of the overlapped emission 

of the UCNPs and the absorption of compound 1, as expected.  

 

Figure 4. Overlaid of the emission spectra of UCPNs (dotted line) and hybrid UCNPs-1 gel 

(upon 980 nm excitation). Intensity at max for both systems is normalized to 1. 
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Interestingly, the hybrid system only originates IR-promoted emission at 410 nm in the gel 

state (Figure 5), being this process cancelled when the gel is disassembled at 80 ºC, a behavior 

directly related to the aggregation induced emission properties of compound 1. The system 

showed good reversibility and several heating-cooling cycles could be performed, restoring the 

upconversion to 410 nm at low temperatures. Consequently, the system formed by UCNPs-1gel 

constitutes a thermally regulated light upconverting soft material. 
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Figure 5. Top: Variable temperature study of the emission spectra of the hybrid UCPNs-1gel 

(exc = 980 nm). Bottom: Variation of the emission intensity at 410 nm for the hybrid system 

UCNPs-1 upon heating-cooling cycles. Dotted line is used as guide to the eye (exc = 980 nm). 

 

It is important to remark that the light emitted by UCNPs at ca. 350 nm is absorbed by 

compound 1 either when the hybrid system is in the gel state (at 30ºC-assembled) or in the sol 

state (80ºC-disassembled) (see Figure 5). This fact has implications for the mechanism of energy 

transfer taking place in the system. At 80ºC the fibers are disassembled and spatial proximity 

between UCNPs and naphthalimide units is precluded, discarding a dipole-dipole energy transfer 

mechanism like resonance energy transfer (RET).
53

 Therefore, a photon reabsorption process, 

also known as inner filter effect, emerges as the most plausible mechanism for energy transfer 

between UCNPs both in gel and solution states although RET can’t be discarded to take place in 

the former case. The inner filter effect has been used in sensing applications based on UCNPs.
54

 

Aside of the previous results, it is noteworthy that the emission intensity of the UCNPs in the 

presence of the supramolecular gel is clearly improved. Variable temperature studies were 

carried out for suspensions of the UCNPs in butanol in the presence and absence of compound 1. 

As can be seen in Figure 6, the emission of the UCNPs at 475 nm measured in the range 20-90ºC 

varies weakly, being moderately higher at low temperatures. However, in the presence of gelator 

1 a very notable dependence with temperature was detected. It is important to recall that in the 

range 20-90 ºC a progressive thermal disassembly of the gel network takes place and the system 

is converted from a gel to a solution. For the sake of comparison, it was decided to analyze the 

behavior of both samples, with and without gelator, normalizing the results to the emission 

intensity measured at 90 ºC for pure UCNPs. This seems reasonable because in both cases free 
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and disperse UCNPs and no aggregates are present. In this way, fluorescence intensity at 20 ºC 

in the presence of the gelator is much higher than that observed in the presence of UCNPS alone, 

with a 6-fold increase (Figure 6). 

The process was found to be reversible and after a heating-cooling cycle, the emission was 

restored to initial values. These results indicate an improvement of the lanthanide nanocrystals 

emission ascribable to their interaction with the fibrillar network. A plausible rationale for this 

behavior is based on the partial isolation from the solvent experienced by the UCNPs upon 

adsorption on the gel fibers, avoiding in this way strong quenching effects from the high 

vibrational states of hydroxyl groups of butanol. Such quenching effects have been demonstrated 

unequivocally in the case of water molecules and other alcohols.
55,56

 It is also important to 

mention that the fibrillary network avoids the clustering of the UCNPs, leading to a more 

homogeneous and uniform luminescent material. Additionally, the scattering of IR light in the 

supramolecular gel could also enlarge the interaction of the laser with the UCNPs, contributing 

to the observed emission.
47
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Figure 6. Variable temperature study of emission intensity at 475 nm of UCNPs (suspended in 

butanol) and hybrid UCNPs-1 gel. Values are normalized taken as reference the intensities 

measured at 90 ºC for both systems (exc = 980 nm). 

 

CONCLUSIONS 

We present a new hybrid system combining a supramolecular photonic gel of naphthalimide-

derived molecules self-assembled into fibers and upconverting NaYF4:Yb/Tm nanoparticles 

(UCNPs). The hybrid system presented here manipulates light reversibly as a result of an optical 

communication between the UCNPs and the photoactive gel network. Radiative excitation 

energy transfer occurs very efficiently affording a transformation of the light emitted from the 

nanoparticles. Upon NIR radiation, the UCNP’s emission overlapping the absorption of the gel 

chromophore is removed and a new emission from the 1,8-napthalimide acceptor appears at 410 

nm. This fact corresponds to a light harvesting process. This process is only active in the form of 
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gel as a result of the aggregation induced emissive properties of the supramolecular gelator. 

Reversible gel disassembly is promoted by temperature changes giving place to a temperature 

regulated tuneable photonic soft material. Additionally, the interaction of the UCNPs with the 

self-assembled fibers fosters the emissive relaxation pathways more than non-radiative decays. 

This fact is accompanied by a greater exposure of the NIR radiation from the gel scattering, 

originating an outstanding improvement of the emission intensity. This effect can also be 

ascribed to isolation from the solvent of the nanoparticles upon interaction with the gel fibers 

together with IR light scattering produced by the self-assembled gel network. Hybrid UCNPs-gel 

systems such as those described here are envisaged to be used in applications related to IR-based 

sensing or light manipulation in general, especially taking into account the possibility of their 

miniaturization in the form of micro/nanogels for biomedical applications. 
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