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In-home monitoring system based on WiFi
fingerprints for Ambient Assisted Living

Joaquin Torres-Sospedra, Oscar Belmonte, Raiil Montoliu, Sergio Trilles, Andrea Calia

Abstract—This paper presents an in-home monitoring system
based on WiFi fingerprints for Ambient Assisted Living. WiFi
fingerprints are used to continuously locate a patient at the
different rooms in her/his home. The experiments performed
provide a correctly location rate of 96% in the best case of all
studied scenarios. The behavior obtained by location monitoring
allows to detect anomalous behavior such as long stays in rooms
out of the common schedule. The main characteristics of our
system are: a) it is robust enough to work without an own WiFi
access point, which in turn means a very affordable solution; b)
low obtrusiveness, as it is based on the use of a mobile phone; c)
highly interoperable with other wireless connections (bluetooth,
RFID) present in current mobile phones; d) alarms are triggered
when any anomalous behavior is detected.

Index Terms—Ambient Assisted Living, In-home monitoring,
Indoor positioning, WiFi fingerprinting

I. INTRODUCTION

According to United Nation Population Division of the
Department of Economic and Social Affairs!, by 2050, the
number of older persons in the world will exceed the number
of young for the first time in history, the proportion of older
persons is projected to reach 21 per cent in 2050, in the case
of developed countries this ratio will reach on third of the
population. The world urban population in expected to increase
by 84% by 2050. This grow will be faster in developing
countries than in developed countries. On the contrary, rural
population is expected to decrease slowly after 2020%. Elder
population in urban areas is rising, because of the decline in
the birth rate and population movements from rural to urban
areas. This is true even in developing countries.

There is a short-term impact on jobs of their families and
caregivers, as well as a long-term impact in their career and
retirement savings. As an example, it has been estimated that
unpaid caregivers provide 17.5 billion hours which can be
valued in terms of money as much as 216.5 billion dollars
in 20123 in USA.

Several studies have shown that age people want to live
at home as long as possible [1], [2]. Aging in place (AIP)*
is defined as the ability to live in one’s own home and
community safely, independently, and comfortably, regardless
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of age, income, or ability level. Age people living in home
represents a short-term challenge in developed countries and
a medium-term challenge in developing countries. Caregivers
are mainly family and friends which cause loss of productivity
and income, as well as stress related illnesses [3].

In-home monitoring systems has become a valuable tool
for elder people to live in their own homes while providing
supportive services for healthcare illness prevention. Following
the systems classification given in [4], we present a system
for independent living and remote monitoring. Consumers
of the data provided by the monitoring system are not the
individual being monitored, but the healthcare practitioners,
caregivers, families and friends, which will receive the long-
term trends and automatic alarms triggered in case of anoma-
lous behaviour.

Most of the in-home monitoring systems already presented,
are based on sensor networks deployed at home. Main sensor
types used in these networks range from inexpensive passive
infra-red motion sensors to video cameras. Some of these
technologies are seen obtrusive, specially in the case of video
cameras. Moreover, such solutions, based on ad-hoc hardware
deployment are seen uncomfortable, impractical and expensive
in some cases.

Ambient Assisted Living (AAL) aims enhancing the quality
of older people by means of the use of Information and
Communication Technologies (ICT)°.

In this paper, we present a non-obtrusive, inexpensive and
easy to use in-home monitoring system based on Wi-Fi
fingerprints registered by a smartphone. Although there are
other technologies available for in-home monitoring, such as
bracelets and watches, smartphones has the advantage of being
a tool for human communication, since direct communication
can be established between the user and any person, institution,
organization or company in charge. Figure 1 shows the growth
in the use of Internet connection by year and age group, it can
be seen that more age people is using Internet at home, and
most of them are using Wireless Access Points (WAPs) for
that. Moreover, the current trend is that age people is adopting
the use of smartphones to keep in contact with relatives and
friends. Current data provided by Eurostat® states that 64.5%
of the population in Spain live in flats, and 21.1% in attached
houses, and 20% of the population between 65 and 74 years
old, retired or inactive access to the Internet using mobile
devices. The proposed system is able to locate a person within
a room under a few margin of error, so continuous indoor
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monitoring of person’s location can be done in real time. By
comparing the current and expected person’s location along the
day, anomalous behavior can be detected which in turn, could
switch on some alarms. The systems has been validated in
seven different real scenarios (urban flats in Spain), including
location and behavioral checking. The system is able to locate
the person at the correct room at a rate of 96% in best case,
and 73% in the most challenging scenario, due to its room
layout. If the access point at housing is not considered, the
percentages diminish in 2% in the best case, which means
that the system is feasible enough in those cases without an
own at housing WiFi.

The rest of the paper is structured as follows, Section
IT presents works related with in home monitoring, gives a
characterisation based on eight items and classifies these works
according with this characterisation; Section III gives and
overview of the system presented highlighting the main points
according the characterisation given in the previous section;
Section IV describes the materials used to deploy the system
and the methods used to acquire the data; Section V presents
the experiments performed to validate our system; conclusions
and lines of future work are given in Section VIIL

II. STATE OF THE ART

This section introduces first WiFi-based Fingerprint posi-
tioning systems, and review some presented works on the
topic. Then, some directly related work on in-home monitoring
is reviewed in this section. Main characteristics or theses works
are extracted for a later classification, which is summarized in
Table I. Finally, a comparison between all these works and
ours is presented at the end of this section.

WiFi-based Fingerprint positioning systems are based on
the Received Signal Strength Indicator (RSSI) level from the
Wireless Access Points (WAPs). One of the major advantages
of the methods based on WiFi fingerprints is that they do not
require the installation of any additional hardware since they
use the existing WiFi infrastructure. Therefore, the location of
the user can be obtained without additional infrastructures and
costs. However, WiFi was not natively designed to support a
positioning function. Taking into account the existing obstacles
introduced by the indoor environment (including reflections
and multi path interference) the spread of radio signal in
indoor environments is very hard to predict [5]. In addition,
in WiFi-based positioning systems, the user typically carries
the smartphone with him, being his motion or how the device
is carried an important factor that affects the measured RSSI
values [6].

There are some indoor location solutions, such as [7], [5],
[8], [9]. In [5] a new WiFi-based fingerprint method was
proposed which uses a previously stored map of the signal
strength at several positions and determines the position using
similarity functions and majority rules. In [8] a different
approach that uses only the rankings of the RSSI values
is used. Authors argue that their method is better to avoid
the well known problem of having hardware and software
differences between user devices. There are other alternative
technologies to obtain indoor localization, such as [7] which

uses a RF-based method, and [9] which performs localization
with a Frequency Modulation (FM) signal-based method.

There exist some papers that review the works presented
in the field of AAL, some of them extensively review the
works directly related with fall detection, while others review
wearable sensor based systems. Axisa et al. [10] present a
review of smart clothing technologies for healthcare, illness
prevention and citizen medicine. These technologies are based
on devices directly attached to the human body and are
able to measure some physical constants as skin temperature
and conductivity. Some of the reviewed solutions can also
determine the location of a patient (user) inside a building
and to use Global System for Mobile communications (GSM)
smartphone networks to notify alarms. It is worth noting that
most of the reviewed works in this paper are proprietary
solutions.

User requirements for wearable health monitoring sensors
are explored in [4]. From the authors point of view, the most
challenging points when developing wearable sensor for in
home health monitoring are: reliability and robustness, un-
obtrusiveness, user identification, communication, zero main-
tenance and fault recovery. Communication approaches are
review in detail as it plays a central role in the independence
of living in home.

A survey of fall detection technologies is presented in
[11]. The analysed methods can be grouped into three main
category: wearable device, ambiance device and camera-based.
All of these methods have multiple drawbacks and require
the user to acquire some special equipment or accessory as
wearable sensors or video cameras.

Taking into account the previously mentioned classification,
the most representative works are commented. To recall, the
ambiance device approach is to use a variety of sensors
installed in the house. These sensors detect when a person is
close enough and, therefore, detect the location of the person.
In [12], InfraRed (IR) sensors are used to monitor the presence
in rooms with no doors, while magnetic switch sensors are
used in rooms with doors. Falls are detected using an ad-hoc
sensor which bases its operation on the data fusion coming
from three different sensors: accelerometer, tilt and vibration
sensors. All information is transmitted using RF signals to
an in-home or remote processor unit. IR and magnetic switch
sensors are cheap, but the ad-hoc sensor to detect falls could
be expensive. Communications are performed using RF, so
some adapter device would be needed to interconnect to the
Internet. Demongeot et al. present in [13] a system to monitor
patients in home. Passive InfraRed (PIR) sensors attached to
each room are used for patient location, generic accelerometer
sensors are used to detect falls, and specific sensor are used
to measure the respiratory rhythm, blood pressure and cardiac
parameters. Communications between sensors and a processor
unit are established by means of the Controller Area Network
(CAN) [14]. XML format is used to transmit and store data,
but any other neutral language could be used, for example
json. Data is taken each hour, and used to detect deviation
from a predefined behaviour which, in case, set off alerts
to note them. In [15] a method for helping in the medicine
intake management task is presented. This system check the
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possibles conflict in the prescribed medicines of elder people.
The medicines information registration is automated using a
RFID card. Additionally, the data of the system can feed other
subsystems in a Smart House. The work in [16] describes a
flexible floor-based indoor localization. This system is based
on capacitive sensing that is specifically designed to detect
position and potential falls of users in a home environment.
They are using passive floor mats of a rectangular shape
equipped with active sensor elements on two adjacent outer
sides. In [17], the authors have developed n-Core Polaris.
This system defines a sensor network thought Zigbee sen-
sors. The sensor network comprises tags, readers and sensor
controllers. A web server connects to readers and offers the
location info to a wide range of possible client interfaces. A
database is created to register historical data, such as alerts
and location tracking. In [18], the authors present iLoc. iLoc
uses an ultrasound ranging for indoor localization. This system
comprises badges, detector nodes (located at known fixed
positions) and a position server. The badge is an ultrasound
transmitter. It emits ultrasound pulses. The detector nodes
receive these pulses and send the reception times to the server.
The server calculates badge position. The work in [19] presents
a method for indoor positioning using microwave signals. For
this purpose, they use beacons and transponders. The beacons
are located in different reference points. The transponders
are placed on objects (elders). Each beacon selects the low
frequency difference signals. Based on these measurements
the distances to transponders are calculated.

Some other works in the AAL field use some kind of
wearable device plus a camera device. A smart home based
health for monitoring diabetes patients is presented in [20].
The system is able to integrate data coming from wearable
sensor, environmental sensor (temperature, humidity, light,
etc.) and cameras. Local transmission is wireless and can be
securely provided by means of Internet services. Analytic is
used on the raw gathered data to recognize the activity of
the monitored patient, and to give feedback to the patient
in form of recommendations about food habits. The work
presented in [21] uses different data sources to determine
whether a person falls. This data sources consists of motion
information, audio stream and video images. The data are
obtained from wearable device such as overhead cameras,
microphone arrays and body sensors. The analysis of this data
detects a fall. Furthermore, this system estimates the gravity
of the fall monitoring the data after the fall. It uses a ontology
and rule-based evaluation for the purpose. Ozcan et al. [22]
propose another video camera-based approach for fall, sit and
lying down detection. In this system, the user wear CITRIC
camera and the computation needed analysis is performed
with an embedded microprocessor. The image analysis method
is based on the oriented image gradients, which takes into
account the orientation of the camera frame during a fall.

A different approach is proposed in [23]. Owl Positioning
System (OwIPS) is a WiFi based for indoor positioning. This
system is composed of a smartphone, WAPs, aggregation
server and positioning server. The smartphone sends different
packages and each WAP extracts the corresponding RSSI.
Next, the aggregation and position servers recollect and anal-

yses the packets and obtain smartphone’s position.

In order to compare the formerly reviewed works, we
propose the following characteristics as they well describe
them in the context of AAL:

o Sensor Type: refers to the type or types of sensors used
for ambient monitoring.

e Cost: the cost in terms of money and efforts to deploy the
monitoring system. Scale: Expensive, Average, Cheap,
Inexpensive.

e Scalability: how easy it is to add new rooms/ambients to
already monitored areas. Scale: High, Medium, Low.

e Obtrusive: the feelings of the users about their privacy
invasion: High, Medium, Low.

o Connection: how the sensors are connected with the mon-
itoring system. Scale: WiFi, Zigbee, Ultrasound, others.

o Interoperable: could be the system described intercon-
nected with other monitoring systems: glucose, heartbeat,
and others. Scale: Yes/No.

o Extensible: can be the system used in other kind of
monitoring use. Scale: Yes/No.

o Alarms: how the user is connected with the people in
charge of the monitoring system. Scale: SMS, e-Mail,
phone call, others.

Table I shows the classification of works reviewed according
the above characteristics.

As it has shown in Table I, most of the works use systems
that requires to add new sensors. Our system does not require
neither new underlying infrastructures or new sensors. The
only device needed is a smartphone, which, in most of the
cases, is funded by the telephony provider company. The
proposed system works through WiFi in the neighborhood.
Even, it can work correctly without own WiFi. Thus, our
system is cheaper than other works.

The patients must carry only their own smartphone and it
does not require new additional sensors, then the patients do
not feel that our system is obtrusive. As formerly said, 20% of
the population between 65 and 74 years old, retired or inactive
access to the Internet using mobile devices, so they already use
to carry a smartphone in their daily lives. Other works install
different sensors or gadgets and they can interrupt the normal
life of patients.

In comparison with other works, another aspect that our
system improves is the interoperability with other sensors.
Nowadays the smartphones offer different kinds of connec-
tions, like Bluetooth, Wi-Fi, NFC, etc. These connections can
be used to add new sensors data that will potentially improve
the monitoring of the patient. For instance, it may be added
a pulse sensor connected to the smartphone using Bluetooth,
and the pulse readings could be sent through the smartphone.

Moreover, it allows the extensibility in other kind of mon-
itoring use. In this case, elders monitoring has been chosen,
but the system allows monitoring other people/things. Based
on our location method, and addressed to AAL, we have
developed an alarm system in charge of notifying anomalous
behavior in the day-life of elder people.

Our alarm system, in contrast to other works, allows to use
different kinds of alarms, depending on its warning level. A
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emergency notification protocol has been defined to notify if
any kind of alarm has happened.

III. SYSTEM OVERVIEW

The proposed system aims to localize a patient (user) inside
her/his home (flat) by a WiFi Fingerprint-based positioning
system. It is based on the Received Signal Strength Indicator
(RSSI) value of all the WAPs present in a neighborhood. These
values can be captured using a smartphone. A fingerprint
consists of a vector with the RSSI value of all the detected
WAPs. The WiFi fingerprints change depending on multiple
variables. One of the most important variables is the position
where the fingerprint is taken.

The main conceptual parts of the proposed methodology are
shown in Figure 2 and explained as follows:

o WiFi signals: these are emitted by each WAP that it is
accessible to the patient’s smartphone. This will include
the user’s WAP if it exists. The method does not require to
know the physical location of each WAP. For the proper
functioning of the system, no additional installation is
required.

o Mobile client: the patient must carry the mobile when
she/he is at home or at least the smartphone must be
in the same space. This client is the first entry point to
launch alarms to the patient.

o Cloud services: these services are divided into two mod-
ules, positioning module and behavioral module. The
positioning module receives a WiFi-based fingerprint
and processes the fingerprint to finally obtain the user’s
current location. The behavior module is connected with
the positioning module to compare the user’s current
behavioral pattern with a predefined and specific pattern
for the user. If some remarkable discrepancy between the
two patterns is found, an alarm is triggered. These cloud
services can be concurrently used by different patients at
the same time.

e Alarms: when the behavior module detects an anomalous
pattern an alarm can be triggered.

In order to deploy the system in a particular scenario,
two main stages are required. They are configuration stage
and operation stage. The configuration stage is necessary to
provide information about the scenario (patient’s flat) and to
create a fingerprint database (prior knowledge), in order to
establish a relation between a fingerprint and a flat’s room.
The operation stage is responsible to periodically send the
fingerprints to the cloud services to locate patient’s position at
any time. This period is typically of two minutes, although can
be configured to save the smartphone battery life. The received
fingerprints in the operation stage, in the simplest way, are
compared to the fingerprint database to predict their position.
The behavioral module is also included in the operation stage,
and is used to detect any anomalous pattern. When this module
recognizes such anomaly, it triggers the corresponding alarm.
Different alarms receptors can be defined, they are the own
patient, her/his family or a health practitioner.

IV. MATERIAL AND METHODS
A. Indoor positioning

A spectacular growth of indoor localization studies has
been witnessed during the last decade. There are also many
works dealing with the indoor localization problem by using
WiFi-based techniques. However, the concept of localization
in the herein proposed system is simpler than those multi-
user multi-building multi-floor indoor positioning systems. In
fact, the proposed system can be considered a single-user
single-building single-floor localization problem which has the
following features:

o The scenario is a flat which is anonymously identified by
a unique identifier of the user’s device.

o Location is based on labels, not in X/Y/Z coordinates.

o The device used in both stages (configuration and oper-
ation) is always the same: the user’s smartphone.

First, the system is only able to localize the user inside
her/his scenario, which corresponds to a single flat. Second,
we do not need the exact coordinates of the person inside the
flat, our system only predicts the place (room of the house)
where the person is. Finally, location completely relies on the
device used. According to prior experiments we performed, the
WiFi-based fingerprint values partially depends on the device
used. Depending on the brand and device model, the number of
WAP detected and the obtained intensity levels vary. With this
device-based location, the device’s brand and model effects on
fingerprints is completely minimized.

In the configuration stage, a radio map (or training database)
of the area where the users should be detected is constructed.
Several samples in each space are taken to create a database
where the WiFi intensities and the ground truth (space where
it was taken) are known. Later, during the operation stage, a
user obtains the signal strength of all the visible WAP’s that
can be detected from her/his position and creates a fest sample
which is compared to the training set. In the simplest solution,
the user’s location corresponds to the position associated with
the most similar sample in the radio map.

The configuration stage has two different steps: Setup and
Training. The Setup step is required to establish the basic data
required for the location system: number of rooms, label for
each room (e.g, Kitchen), photography for each space (e.g,
Living-room) and personalized alarms.

In the training step a WiFi-based fingerprint database (radio
map) is generated which is the basis of the localization
performed in the operation stage. Since the aim of this step
was to store several WiFi-based fingerprints correctly labeled
(space/room where the user is), a smartphone application was
developed (see some examples in Figure 3). This application
allows the user to get space-labeled fingerprints. In particular,
it allows the user to select where it is located, and it also
allows to send to a centralized server 10 different WiFi-
based fingerprints measurements by pressing a user-friendly
interface. It is necessary to take several fingerprints (10 in our
case) since Wi-Fi signal is harsh and it varies across time even
if the time period is quite small (e.g. less than 1 second). The
application changes the background image according to the
space (kitchen/wc/...) where the user is to provide a visual
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representation of the space and, therefore, avoid errors in
labeling. On the server side, a web service has been deployed
to store the fingerprints sent by the smartphone into a database.
All the fields sent by the device were kept unchanged, but a
server-based timestamp was included.

The operation stage was developed in order to periodically
send a WiFi fingerprint to the server for localization purposes.
This service is run on background in the patient’s smartphone,
so it does not require any interaction with the user. The
localization and further analysis are fully performed in the
server side.

In this contribution, indoor location is dealt as a machine
learning problem. Instead of providing explicit rules to predict
the current room for an operational fingerprint, we use ma-
chine learning techniques to create a mathematical model that
learns the rules from the fingerprints taken at the configuration
stage. In this particular problem, room-based location can
be considered a classification problem where the machine
learning model has to classify the fingerprint into as many
categories as rooms are in the flat. The advanced classifiers
based on machine learning are generic and they usually require
a training procedure to set the optimal internal parameters to
apply it in a particular problem, such as the indoor location
inside a flat.

To perform an assessment of the proposed space-based
location, the following well-known advanced classifiers were
used: the learning-based classifier Multilayer Perceptron with
Backpropagation (MLP) [24], [25], the distance-based classi-
fier k-Nearest Neighbor (kNN) [26], the learning-based clas-
sifier Support Vector Machine (SVM) (with Linear Function
(LF) and Radial Basis Function (RBF) function kernels) [27],
and the ensemble learning-based classifier Random Forest
(RF) [28]. All these classifiers needed to adjust some internal
parameters, which was done via cross validation [29] for MLP,
SVM and RF. For kNN, k was established to 1.

B. Behavior modeling

A new functionality has been implemented to capture the
behavior of the users. This service uses the localization system
presented in the previous section to obtain the location of the
user into the house each n minutes, being n a configurable
parameter in the application. For instance, n has been set to
2 minutes in our experiments. In our proposed methodology,
users wear the mobile phone with her/him or at least the
mobile phone must to be in the same room that the user. Then,
following this rule, it is possible to obtain the location of the
user along a complete day.

All the information regarding the location of the user
in a day is stored in the server as a matrix B? =
[B{,...,B{, ..., B%], where d, t and T stand for day number,
time period and number of time periods, respectively. For
instance, if n = 2 minutes, there are T' = 720 times periods,
i.e. it is possible to obtain the location of the user at home
720 times in a day. Each B is a R x 1 vector (with R being
the total number of spaces) where each element of the vector
Bi(r) is defined as follows:

1 if the user is in the r-th space
0 otherwise

Bi(r) = { (1)

When enough data is available (for instance, after several
days) a behavioral model M can be estimated using the
probabilities that the user is into each of the spaces of the
house given each time period. M is modeled as a matrix
with R rows and 1" columns, and each element of the matrix
M (r,t) stores the probability of the user staying at room r at
time period ¢. It can be estimated as follows:

Laep Bi(r)
D]
where D is the set of days taking into account to build the

model M.

Figure 4 shows an illustrative example of the behavior
modeled for an hypothetical user. In this figure, it is assumed
that the 100% of the time the user is at home and always in
some of the four (R = 4) following spaces: Living Room,
Kitchen, Bathroom or Bedroom. Model showed in Figure 4
has T" = 24, i.e. it shows the probability of staying in some
of the four spaces each hour (n = 60). The user behavior
can be explained as follows: she/he gets up between 7am and
8am, spends most of the morning time in the living room, has
lunch between 2pm and 3pm, takes a nap after having lunch,
after nap goes to the living room, takes a bath around 7pm,
has dinner at 9pm and finally goes to bed between 9pm and
10pm. This is only an illustrative example of how the behavior
of the user can be modeled. In real cases, it is preferable to
use small time periods for better modeling the user behavior.

A model M can be updated at the end of the day when new
BP+1 data is available as follows:

(ZdeD Btd<7’)) + aBD—H(T)
|D + 1|

with o being a factor to weight how new information con-
tributes to the actual model.

People are habitual [30] and elders tends to be even more
habitual. Therefore, it is expected that the most of the days
the user behavior will be similar. However some different
patterns can appears, as for instance, in weekend, where user
can change the usual behavior. For these cases, more than one
model M for each user can be modeled. Let’s define A* as
the set of all model behaviors for estimated for an user u, i.e.
A ={My,...,Mp,, ..., Myu], being \* the total number of
different models needed to explain the behavior of the user w.
Usually, only two models are enough to model the most of
the users, the first one for a normal day and the second one
for a holidays or weekend one.

M(r,t) = 2)

MD+1(r,t) =

3)

C. Alarms

As it has previously commented, it is possible to estimate in
which space of the house the user stays at any moment of the
day. In addition, the probability of staying in each space given
a time period is also known (models A“). Therefore when, in
a particular time moment, the user stays in a space not in
the spaces with high probability, then it can be assumed that
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something strange is happening. In particular, if this situation
happens for a big enough number of consecutive times periods,
then an alarm can be trigger. The exact number of consecutive
times periods needed to trigger the alarm depends of the cases
and it is configurable in the proposed methodology.

Figure 5 shows and example of the activation of an alarm.
It shows the behavior captured for an user between 7pm and
8pm (i.e. using n = 1). In this case, the user tends to stay at
bathroom in the first half of the hour. However, she/he remains
at the bathroom more time that expected. It is expected that
approximately at 7:30pm user leaves the bathroom to go to
the living room. However, after 10 consecutive time periods
(i.e. after 10 minutes) the estimated location is different from
the expected one, then a problem in the bathroom alarm could
be activated.

V. EXPERIMENTS

A. Assessment of the proposed WiFi-based fingerprint Indoor
positioning system

In this section, the experiments to validate the feasibility of
the proposed system are introduced. First, the experimental
setup is described. Second, the main results about indoor
positioning with the advanced classifiers are shown. Then, we
analyze the results provided by the different machine learning
techniques on seven scenarios. Finally, we show the accuracy
of the Indoor Positioning System based on WiFi fingerprints,
after removing the signals provided by the user’s Internet WAP.

1) Experimental setup: Seven completely different scenar-
ios have been considered for the proposed system’s evalua-
tion. Those scenarios were provided by different volunteers
with different locations, different smartphones, among other
features. They are totally independent since:

o Distance between scenarios is considerable. Even, the
scenarios are dispersed/scattered in three different towns.

o Features (detected WAPs) are different in all the scenar-
ios. None of the WAPs has been detected in more than
one scenario.

e Users are different in each scenario.

o The device was different in the seven scenarios changing
brand, model and/or OS version.

The WiFi-based fingerprints on those scenarios were
mapped by means of the training application (see Figure 3).
Captures were taken to completely cover the spaces of the
scenarios. Then, two weeks later, a one-week period was
established to obtain a new set of fingerprints that will be
used for validate the performance of the proposed indoor
localization system. This new set is call the validation set. The
validation captures were taken covering the whole scenario at
different time-slots (mornings, evenings, midnight, ...). Table II
introduces the features (total number of WAP’s detected, mean
of WAP’s detected per fingerprint, and number of captures per
room) of each scenario.

Table IT shows that we have also covered different strategies
in performing the captures. Also was the number of captures
considered for our study, Scenarios 2 and 3 were mapped less
times (there are less than 2,000 samples in total) where other
scenarios, such as Scenario 1 with more than 10,000 captures,

were fully sampled. In total, the whole database contains
31,501 samples (17,229 for training, 14,272 for validation).
It is worth mentioning that the training samples and the
validation samples were acquired in different days, with a time
separation between them of, at least, two weeks. Therefore
it could be big differences between fingerprints captured at
training one with respect to the ones captured at validation
time, simulating a real case.

Maps of Scenarios 1, 3 and 4 are shown in Figure 6. In
all the maps: orange stands for Kitchen and Laundry-room,
green for Living-room, yellow for Hall/Entrance/Corridor, red
for Rooms (Bedrooms), blue for Bathrooms and pink for the
Closets. In gray, there are spaces outside this apartment (stairs,
elevator, the neighbor’s home, among other spaces).

In Scenario 1, from top to bottom of the map, there are
Room 1, Room 2 and Room 3. From left to right sides of the
map, there are WC 2 and WC . In this scenario, the second
bathroom is inside the third room. Finally, this flat is between
two neighbor’s flats as can be seen in the top and bottom sides
of the map. Moreover, the left side of the map faces to street
whereas the right side faces to an interior open space.

In Scenario 3 and 4, the colored rooms have the same
meaning. For Scenario 3, the rooms (from top to bottom)
are: Room 3, Room 2, and Room I. Similarly, the bathrooms
(also from top to bottom) are: WC 2, and WC 1. Also is the
WC 2 inside Room 3 in this scenario. Note that this flat is
between two neighbor’s flats. In fact, the structure of Scenario
3 resembles Scenario 1 in some key features. For instance, it
is between two neighbor’s flats. Moreover, one side faces the
street and the opposite side faces an interior open space and
another neighbor’s flat. However, there are also some major
differences between these two scenarios distribution.

In Scenario 4, which radically differs from the two previous
scenarios, the first room is the one located on the right side
of the map, then the second room is the one with a bathroom
inside, so the third room is the one located, in the map, below
the second room. WC [ is located in front of Room I and it
can be accessed through the corridor, whereas WC 2 is located
inside Room 2. Only one side of the flat is shared with a
neighbor’s flat and building stair, the other three face a street.

2) Classification results: Table III introduces the classifi-
cation results obtained with the 5 different classification ap-
proaches mentioned in Section IV-A. The performance shown
corresponds to the percentage of correctly classified samples
(fingerprints) included in the validation set. Only samples of
the training phase were considered to generate/train the base
classifiers. Since SVM, RF and MLP classifiers use some
random processes in the training phase, the experiments have
been repeated 10 times.

The results provided in Table III shows that the accuracy
of indoor location is, in general, very good. For instance,
the highest overall accuracy (96.01%) is provided by RF in
Scenario 4. Comparing the five classifiers in all the scenarios,
INN is outperformed by SVMLF, SVMRBF, RF and MLP.
Although the best classification rates tends to be provided
by RF and SVMRBF, the other two classification alternatives
SVMLF and MLP also provide high performance.
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3) Analysis of results: From the seven scenarios, three of
them were selected to perform a more precise analysis. In
particular, they were scenarios 1, 3 and 4 since they reported
an intermediate, the worst and the best classification rates
using RF as base classifier respectively. The maps of these
three scenarios were shown in Figure 6. We selected the RF
classifier because it provided high classification rates in the
seven scenarios, it is the best performing classifier in four
scenarios, and it provides the highest overall performance
(96.01% =+ 0.08% in Scenario 4).

Table IV introduces the real confusion matrix of three
spaces using the RF classifier. The columns represent the
fingerprints in the predicted spaces, while the rows represent
the instances in the actual spaces. For instance, Scenario 1 had
1257 instances (validation fingerprints) taken at the Living-
Room which were correctly labeled (predicted) by the RF-
based classifier, but 139 instances also taken in the Living-
room were wrongly predicted to belong to WC 1.

According the three matrices introduced in Table IV, it can
be seen that the majority of instances (fingerprints) are in the
main diagonal. It denotes that our system, based on a RF
classifier, correctly predicts the actual space.

The confusion matrix of Scenario 1 shows that 87.85%
of measurements are correctly predicted (the predicted space
corresponds to the actual space). Kitchen and Living-room
provided similar fingerprints in a few cases (3.6% of total
fingerprints), this misclassification was expected since both
spaces are quite close and they share a common wall. It was
also the case for the two bathrooms (1.8%), Room 2 & Room 3
(1.2%), and Living-room & WC 1 (3.2%). There was a special
case, which represent only the 1.3% of fingerprints, where WC
2 was confused with Room I. This special case is due to the
proximity of Room I and WC I whose doors are facing the
another.

The performance in Scenario 3 was 72.64% (spaces cor-
rectly predicted). In this scenario, both WC’s provided similar
fingerprints (almost 4%). It was also the case for Room 1
& Room 2 (1.9%), and Room 2 & Room 3 (4.5%). Some
measures taken in WC 2 were predicted to belong to Room 3
(3.1%). In the previous cases, misclassification was expected
due to the location of the actual and predicted spaces (e.g, WC
2 is inside Room 3). However, there were a few spaces (WC
I and WC 2 mainly) with very low WiFi coverage, and they
reported the major part of misclassifications (but they only
represent the 7.7% of total cases).

The last scenario, Scenario 4, was the one which provided
the best classification results (96% of correctly classified
fingerprints). The misclassifications mainly corresponded to
confusion among Kitchen, Laundry-room and Living-Room
(1.7%). Those three spaces are quite close so samples near the
wall can be misclassified. Moreover, there existed confusion
between Room 1 & WC 2 (0.5%), and Room 2 & WC 2 (0.8%).
In these two last cases, the distance between the predicted and
actual spaces was also very low.

In general, the confusion matrices graphically reported that
the majority of spaces are well predicted. Moreover, with the
help of the scenario’s maps, it can be seen that the majority
of misclassifications are due to the low distance between the

predicted space and the actual space. As commented before,
we consider that the results obtained are a success since the
proposed system correctly works with the sensors already
present at the scenario and it is unnecessary to include extra
devices which could increase the implantation costs.

4) Results without user’s Internet Router: After performing
the main location with the different classifiers, a few extra
location experiments were performed on all scenarios using
RF as base classifier. These special experiments consisted in
performing the whole classification procedure without consid-
ering the user’s Internet WAP. So, in those cases the MAC
associated to the user’s WAP was removed from the training
and validation fingerprints. With this procedure, we simulated
the behavior of the indoor location in those scenarios in which
the user has not an ADSL/Cable Internet connection or the
modem/router does not allow wireless connections. The results
of this experiment are shown in Table V.

The results in the experiment without user’s WAP also
provided high classification rates. In fact, the classification
rate was higher than 85% in 5 out of 7 scenarios. The
results in Scenario 2 were also good (a classification rate
of 75.15% =+ 0.27%) and the lowest value corresponded to
Scenario 3 (60.10% =+ 0.10%). The differences between the
normal and modified location system was low in 4 cases (a
difference around 2%). Although the difference was higher
in two cases (around 5% for Scenario 2 and Scenario 4),
the classification rate provided by the modified system was
good enough in those two cases (75.15% =+ 0.27% and
90.60% =+ 0.07% respectively).

The classification rate without user’s WAP was 60.10% =+
0.10% in Scenario 3. Although the difference with respect to
the full classification was high —12.42%, this scenario had
very low WiFi coverage in some areas and the number of
detected WAP’s per fingerprint was low. Table VI is introduced
to explain better this low coverage. Concretely, it introduces
the distribution of fingerprints according to the number of
WAP’s detected. Only Scenario 3 (with and without user’s
WAP) and Scenario 4 are shown in this table.

Note in Table VI that the number of WAP’s detected per
fingerprint is very low in Scenario 3. In fact, there were
detected five or less WAP’s in more than 60% of captured
fingerprints. On the other hand, approximately 95% of total
captured fingerprints detected more than 10 different WAP’s
in Scenario 4. This percentage for Scenario 4 decreased
to 91.6% after removing the user’s WAP. Moreover, after
removing the user’s WAP, the 70% of captured fingerprints
reported five or less WAP’s in Scenario 3, being void (no
WAP was detected) 4.1% of total captures. It is important
to mention that, even this major drawback in Scenario 3, the
classification rate remained in a reasonable percentage for an
8-class classification problem, and the confusions in location
were expected due to the proximity between the actual and
the predicted space.

B. Experiments on detecting anomalous behavior

The experiments on detecting anomalous behavior have also
been done for Scenarios 1, 3 and 4. Each user has been
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interviewed to obtain an initial estimation of her/his behavioral
model. After the interviews, two different user-based models
have been obtained for each user: the first one for regular days,
and the second one for weekends and holiday days.

Once the two models for the three users have been obtained,
three possible standard alarm situations have been simulated.

1) Problem in the bathroom: The first alarm is similar to
the one showed in Section IV-C. The user stays in the
bathroom much more time than expected in the time
slot.

2) Waking-up problem: The second alarm consists on a
situation where the estimation of the position of the user
is still into the bedroom in the early morning when the
expected space from the model is a different space. E.g,
the user is expected to have breakfast or watch TV on
the living-room but she/he is still sleeping.

3) Unexpected home leaving: The third alarm focuses on
the situation that the user leaves home when the model
has predicted that the user should be at home. E.g.,
when the user leaves home at 3 A.M., which is a very
unexpected situation.

The simulation consisted in performing some abnormal ac-
tions to test if the alarms are correctly activated. In particular,
each alarm situation was simulated 20 times. All the parts
(morning, evening and night) and types (regular and holiday)
of the day, and all their combinations, have been considered
in the different repetitions. E.g. the user stayed much more
time in the bathroom than expected to test the first alarm
situation. The alarms for the 60 simulated abnormal behaviors
(20 for each alarm) were always correctly activated in the three
scenarios, since the estimated space provided by the location
system is different enough from the expected space obtained
from the behavioral model.

Moreover, 10 normal behaviour days (seven regular days
and three holiday days) were also evaluated on the three
scenarios. The system reported that the user’s behaviour was
totally normal and none alarm was activated for Scenarios 1
and 4. Only two consecutive false problem in the bathroom
alarms were triggered in Scenario 3. According to this second
simulation, the operational location accuracy tends to be higher
than the validation set accuracy under normal user’s behaviour.
The validation samples were taken to cover the whole rooms,
including corners and places close to walls. The users are
not usually located on some of these places (such as a room
corner), and they tend to be located close to the center of
the rooms. So, our experiments shows that the fingerprints
taken at the center of the rooms tend to be more representative
than those located at the room walls and corners, therefore the
IPS provide high accuracy under normal situations (in which
the user is close a room center) even in those scenarios like
Scenario 3.

VI. DISCUSSION

The context of our solution is to provide an in-home
monitoring system, and it has been designed to be used in
urban flats where there exists an important number of neigh-
bors. Most of them will have a wireless Internet connection,

so the number of visible WAPs from the patients house is
expected to be high. We consider that out solution is feasible
since: 1) almost the 70% of population in Spain live in this
dwelling type, 2) almost 75% of Spanish households have an
Internet connection by 20147, 3) the main devices used to
connect to Internet are mobile phones and laptops, so wireless
connections are widespread at Spanish homes.

The proposed methodology uses the existing wireless net-
work topology for providing indoor localization with WiFi
fingerprints and some different machine learning techniques.
An accurate room-level positioning is obtained with the use
of advanced techniques such as Random Forest, Support
Vector Machines or Neural Networks. For the purposes of the
developed system, it is enough to obtain a room-level posi-
tioning instead of a precise longitude/latitude/altitude position.
The experiments have demonstrated that the proposed indoor
localization system can continuously provide the room where
the user is with a high accuracy level.

Alarms are based on detecting abnormal situations, i.e.
when the user stays long time in a place not in the expected
places for this date/time. As the simulation results have shown,
they are properly activated when an anomalous behaviour
occurs. There have been only 2 normal alarms that have
been improperly activated, and they corresponded to the most
difficult scenario. However, it is worth mentioning that in this
kind of applications, it is much more important to minimize
the false negatives (non-detected abnormal situations) than
minimize the false positives (activating an alarm in normal
situations). In our experiments, all the abnormal situations
have been correctly detected (there were O false negatives), and
that feature is very important in an AAL application. Although
there were only 2 false positives, it can be easily checked
whether the alarm was properly or improperly activated by
means of a simple phone call.

In our proposed methodology, users should wear the mobile
phone with her/him or at least the mobile phone must to be in
the same room that the user. It has been previously commented
that nowadays elders are increasingly using the mobile phone.
In addition, for users it is preferable the use of a well-known
device as the mobile phone instead of the need of wear other
not so common devices as in other methodologies. Nowadays,
the state-of-art gadgets are SmartWatches. However, most of
them does not include direct WiFi connectivity and Internet is
accessed through a Bluetooth connection to the mobile phone.
We consider, that our results shed light on WiFi positioning
and our work could be reused in a near future with new
SmartWatches with WiFi connectivity.

In addition, an important feature of our system is that it
relies on the current wireless network topology, that includes
the user’s Internet router (if the user had one at home) and
the neighbor’s WAPs. So, we have not added any extra sensor
nor device to perform the experiments. Moreover, the location
system had not any prior knowledge of the environment
(features of the mobile, structure of the flat, and location of
the WAPs, among others). In general, the proposed system is
an easy-to-install, inexpensive and unobtrusively system.

http://www.ine.es/en/prensa/np864_en.pdf
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VII. CONCLUSIONS

The proposed monitoring system for Ambient Assisted
Living is able to unobtrusively detect and analyze the user’s
behavior by means of the user’s smartphone and the already
deployed WiFi networks. A service has been developed to
periodically send a WiFi-based fingerprint to a centralized
server. This server has to estimate the user’s position using
the fingerprint and a few prior knowledge (only training fin-
gerprints taken at the configuration phase). Using the estimated
positions, the monitoring system is able to detect anomalies
in user’s behavior.

The results of this work indicate that:

e Room-level indoor location based on machine learning

provides very good results, and it reaches a classification
rate of 96.01% in the best scenario and 72.52% in
the most challenging real scenario. Even in the worst
possible scenario, where the user has not any WiFi
router/antenna at home and the neighbor’s WiFi coverage
is low, the classification rate is good enough for an eight-
class classification problem. Moreover, the majority of
misclassifications are due to the low distance between the
place where the capture was taken and the adjacent room.
E.g, the two bathrooms may provide similar fingerprints
when they are side by side.

Current user’s behavior can be extracted from the location
performed.

Anomalies can be detected and the corresponding warn-
ings can be sent using different technologies.

As future work, it is planed to improve the interoperability
of the capture behavior system to interact with other health
monitoring systems already developed. Gathering information
about hearth’s rate, blood pressure, diabetes, or presence of
apnea may be quite important to improve user’s health and
quality of life.
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Fig. 1. Percentage of Spanish population, both sexes, using Internet by year and age, over 3 moths period. First column shows total for any age within 16-74
years.
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Fig. 2. The four main conceptual parts of the proposed system: 1) the received WiFi signals emitted by the user’s and neighbor’s Internet WAPs, 2) the
mobile client that records the information required for positioning, 3) The cloud services that processes all the information for positioning and abnormal
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Cite Sensor Type Cost Scalability  Obtrusive Connection Interoperable Extensibility Alarms
[12] IR, magnetic  Medium Medium Medium Not specified Yes Yes Yes
switches &
ad-hoc smart
sensor
[13] IR, magnetic, Lost Medium Ethical issues CAN Data level (XML) Yes for location Yes
body constants
[20] Wearable, Expensive ~ Medium Medium Wireless Yes Yes No
environmental
and cameras
[15] RFID card Average High Medium RFID Yes No No
[21] Wearable Expensive High High ZigBee Yes Yes Yes
camera,
microphones
and sensors
[22] Wearable camera Expensive High High Not specified No Yes Yes
[16] Capacitive sen-  Average Low Medium USB No No Yes, phone call
sors
[23] WiFi Cheap High Low Mobile phone Yes Yes No
[18] Badges Average Medium Low Ultrasounds Yes Yes No
[19] Beacons & Expensive  Medium Low Microwave signals Yes Yes No
transponders
[17] Zigbee sensors Expensive ~ Medium Low Zigbee Yes Yes No
Ours WiFi Inexpensive High Low Mobile Phone Yes Yes Yes
TABLE T

IN HOME MONITORING SYSTEMS COMPARISON.
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TABLE I
RESUME OF CAPTURES TAKEN. KT STANDS FOR Kitchen, LD FOR Laundry-room, LV FOR Living-room, R# FOR Room # AND W# FOR WC #

Scenario Living Area total WAPs mean WAPs KT LD LV RlI R2 R3 W1 W2 Total

e m w10 e e s
e w e THO o m e w
e W sy T wmommmew
Cwew e T 000w
s ww ow 100w 0w o
R
T e w ey 1M omxomon
Total T 2216 1134 3279 2377 2451 2026 1798 1948 17229

V 2487 854 3457 1665 1938 1112 1659 1100 14272




TABLES

TABLE III

RESULTS OF THE LOCATION SYSTEM.

Scenario

INN

SVMLF

SVMRBF

RF

MLP

N O Tk W

75.42%
75.00%
63.81%
78.58%
84.84%
82.04%
65.94%

83.15% + 0.09%
80.55% + 0.18%
69.97% + 0.15%
92.18% + 0.04%
92.03% + 0.01%
87.90% =+ 0.06%
87.70% + 0.09%

86.00% £ 0.11%
82.55% + 0.22%
66.00% £ 0.44%
93.14% £ 0.10%
93.57% + 0.04%
89.11% £ 0.12%
89.37% + 0.08%

87.59% + 0.06%
81.03% + 0.10%
72.52% + 0.08%
96.01% + 0.08%
93.36% + 0.05%
89.97% + 0.06%
88.93% + 0.05%

84.52% + 0.39%
81.35% + 0.34%
67.74% £ 0.46%
93.31% + 0.24%
91.65% + 0.18%
88.40% =+ 0.19%
88.58% + 0.19%
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TABLES

TABLE IV
CONFUSION MATRIX FOR SCENARIOS 1, 3 AND 4. ROWS STAND FOR THE PLACE WHERE THE FINGERPRINT WAS TAKEN AND THE COLUMNS STANDS FOR
THE PREDICTED PLACE USING RF.

Scenario 1
KT LV LD R1 R2 R3 Wi w2
851 62 2 0 0 0 21 1 KT
93 1257 1 0 0 0 139 0 LV
5 0 101 0 0 0 0 0 LD
0 0 0 427 0 0 9 24 | Rl
0 0 0 0 449 41 0 0 R2
0 0 0 8 9 112 0 1 R3
0 0 0 1 0 0 452 57 | WI
0 0 0 31 0 0 19 140 | W2
Scenario 3 Scenario 4
KT LV LD R1 R2 R3 Wi W2 KT LV LD R1 R2 R3 Wl W2
89 7 0 0 0 0 16 8 KT | 280 1 9 0 0 0 0 0
0 149 0 0 1 0 0 0 LV 6 323 0 0 0 1 0 0
7 0 3 0 0 0 3 17 |LD 16 0 132 0 0 0 0 0
0 0 0 99 10 0 0 0 R1 0 0 0 247 0 0 0 3
0 16 0 4 69 10 0 0 R2 0 0 0 1 264 4 0 1
0 0 0 0 26 79 0 2 R3 0 2 0 0 1 18 2 0
8 2 0 0 1 12 41 15 | W1 0 0 0 1 0 4 225 0
4 3 3 0 4 25 16 55 |W2 0 0 0 7 14 1 1 147
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TABLES

TABLE V
RESULTS OF RF WITHOUT CONSIDERING THE USER’S WAP.

Scenario RF (include user’s WAP) RF (without user’s WAP) Difference

1 87.59% + 0.06% 85.47% + 0.08% —-2.12%
2 81.03% £ 0.10% 75.15% £ 0.27% —5.88%
3 72.52% + 0.08% 60.10% + 0.10% —12.42%
4 96.01% + 0.08% 90.60% =+ 0.07% —5.41%
5 93.36% =+ 0.05% 91.33% £ 0.05% —2.03%
6 89.97% + 0.06% 89.22% =+ 0.08% —0.75%
7 88.93% + 0.05% 87.32% + 0.08% —1.59%




TABLES

TABLE VI
DISTRIBUTION OF NUMBER OF WAP’S DETECTED PER FINGERPRINT
Scenario 0 1 2 3 1 5 [6...10] [11...15] > 16
3 (normal)  0.0% 11% 14.2% 18.3% 14.38% 10.9% 28.3% 8.3% 1.2%
3 (modified)  4.1% 14.2% 18.3% 14.0% 10.9% 8.9% 22.4% 5.6% 1.0%
4 (normal)  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.3% 26.4% 68.3%
4 (modified)  0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 7.9% 32.7% 59.2%
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