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9 In this work, a 3D reconstruction approach for flexible sensing inspired by integral imaging techniques is pro-
10 posed. This method allows the application of different integral imaging techniques, such as generating a depth
11 map or the reconstruction of images on a certain 3D plane of the scene that were taken with a set of cameras
12 located at unknown and arbitrary positions and orientations. By means of a photo-consistency measure proposed
13 in this work, all-in-focus images can also be generated by projecting the points of the 3D plane into the sensor
14 planes of the cameras and thereby capturing the associated RGB values. The proposed method obtains consistent
15 results in real scenes with different surfaces of objects as well as changes in texture and lighting. © 2017 Optical

Society of America

16 OCIS codes: (100.6890) Three-dimensional image processing; (110.3010) Image reconstruction techniques; (110.6880) Three-

17 dimensional image acquisition.
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19 1. INTRODUCTION

20 As opposed to traditional two-dimensional (2D) imaging tech-
21 niques, three-dimensional (3D) imaging technologies can po-
22 tentially capture the 3D structure, range, and texture information
23 of the different objects in a scene. Additionally, 3D imaging
24 technologies are more robust to partial scene occlusion. There
25 are many 3D imaging technologies, such as holography and
26 related interferometry techniques [1], stereoscopy [2], pattern
27 illumination techniques [3], LADAR [4], and time-of-flight
28 techniques [5].
29 Multi-perspective imaging obtains 3D scene information by
30 recording conventional 2D incoherent images from multiple
31 views. Because standard 2D images are used, multi-perspective
32 3D imaging systems can be built using a single inexpensive
33 camera with a lenslet array or an array of inexpensive sensors.
34 However, thanks to the advances in optoelectronic sensors such
35 as CMOS and CCDs, display devices such as LCDs, and com-
36 mercially available digital computers, integral imaging is a very
37 active area of research nowadays.
38 Integral imaging can be considered a class of multi-view
39 imaging acquisition and display technology [6]. It has been ap-
40 plied in fields like visualization [7], target recognition and rang-
41 ing [8], 3D photon-counting imaging [9,10], 3D imaging for
42 objects under occlusions or in a scattering medium [11], 3D
43 underwater imaging [12], biological or medical imaging [13],

44integral microscopy [14], and others [15], to cite just a few
45examples.
46Integral imaging performs well under ambient or incoherent
47light, which compares favorably in relation to other sensing
48techniques, such as holography, LADAR, or structured light,
49that make use of an active illumination system. It also has spe-
50cific benefits over 2D imaging as well as stereo imaging. For 3D
51visualization purposes in integral imaging, the microlenses pro-
52duce differences in the light density within the space in front of
53the observer. Thus, there is a real reconstruction of the light
54structure produced by the original 3D scene. In lenslet-based
55integral imaging systems, the achievable resolution is limited by
56the size of the lenslet and the number of pixels allocated to each
57lenslet. In essence, the resolution of each elemental image (EI)
58is limited by three parameters: the pixel size, the lenslet point
59spread function, and the lenslet depth of focus [7,16]. In ad-
60dition, aberrations and diffraction are significant because the
61size of the lenslet is relatively small. In contrast to the lens-
62let-based systems, integral imaging can be performed either
63in a synthetic aperture mode or with an array of high-resolution
64imaging sensors. Each perspective image can be recorded by a
65full-size CCD or CMOS sensor of several megapixels. This ap-
66proach may be considered synthetic aperture integral imaging
67(SAII) [17]. SAII enables larger fields of view (FOVs) to be
68obtained with high resolution 2D images because each 2D im-
69age makes full use of the detector array and the optical aperture.
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70 Traditionally, SAII consists of a setup formed by a camera
71 array located on a planar surface. This configuration greatly
72 limits the application of SAII in other situations where an ar-
73 bitrary arrangement of the cameras is necessary. In Ref. [18],
74 the authors propose the use of a lenslet-based integral imaging
75 system that has an array of lenslets embedded in an elastic scaf-
76 fold, integrating it into a flexible optoelectronic detector array
77 in an arbitrary non-planar configuration. Recent advances in
78 mechanics and material properties of conventional rigid wa-
79 fer-based technologies, but with the ability to be stretched
80 and deformed into arbitrary shapes, allow active components
81 to be connected to create new engineering options in imaging
82 devices, where the geometry of the detector array can be opti-
83 mized together with the lens configuration [19]. The most
84 promising initial possibilities for application are in surveillance,
85 night vision, endoscopy, and retinal implants, or as active com-
86 ponents on the eye to enhance vision.
87 Moreover, authors in Ref. [20] present a 3D integral image
88 acquisition and reconstruction technique with unknown sensor
89 positions and orientations placed on a flexible surface that in-
90 creases the field of view of the 3D imaging system. In addition,
91 the proposed estimation algorithm assumes that the relative
92 pose of the first two cameras is known. This may not be very
93 convenient if we want to carry out experiments in real-world
94 scenarios without any constraints. Another problem that arises
95 when seeking to solve 3D reconstruction with sensors on a flex-
96 ible surface is how to obtain a criterion that is robust in this
97 type of problem with an arbitrary camera arrangement. In
98 Ref. [21], a methodology is developed to build a depth map
99 of the scene using a minimum variance approach. Depth esti-

100 mation accuracy will degrade when object surfaces do not
101 satisfy the Lambertian assumption and requires a precise photo-
102 metric calibration of the cameras, such as in the presence of
103 partial occlusions or when concave surfaces exist. To address
104 this problem, several proposals for multi-view photo-consistency
105 measures have been developed, such as voxel coloring [22],
106 space carving [23], standard deviation based on an adaptive
107 threshold [24], and voting strategies [25], and in some deform-
108 able surface methods [26]. Similarly, the variational formu-
109 lation relies on square intensity differences [27] or modeling the
110 intensity deviations from brightness constancy by a multivariate
111 Gaussian [28]. Other photo-consistency measures are based on
112 the assumption that a comparison can be made between pairs of
113 images used in stereo, such as normalized cross-correlation
114 (NCC), the sum of squared differences (SSD), mutual infor-
115 mation-based measures, and others [29]. Nevertheless, this
116 does not remove any of the severe limitations of the Lambertian
117 assumption.
118 Integral imaging offers a series of advantages in relation
119 to other 3D imaging techniques. Three of them are: (a) its
120 capability to reconstruct a scene on planes at a constant depth,
121 where only the objects that are at that distance from the camera
122 array are in focus; (b) the creation of an all-in-focus image from
123 the stack of depth planes; and (c) the ability to infer a depth
124 map of the scene.
125 The main contribution of this work is oriented toward pro-
126 viding a technique to adapt the reconstruction methodology
127 applied in integral imaging for a flexible sensing configuration

128and show that these same features (i.e., focus on a given depth,
129creation of an all-in-focus image, estimation of the scene depth,
130etc.) can be obtained in a flexible sensing configuration. To that
131end, a precise calibration of the system is used based on [30],
132which does not need knowledge of any intrinsic or extrinsic
133parameter of the cameras setup.
134To show the feasibility and accuracy of the proposed 3D
135plane reconstruction by reprojection, we analyze the problem
136to obtain a photo-consistency criterion introduced in Section 3
137for flexible sensing setups. Thus, we apply the approach pro-
138posed in Ref. [31] for light field displays, consisting in a defo-
139cusing strategy to deal with spatial information surrounding a
140pixel. Furthermore, a comparison of this photo-consistency
141measure will be made with the method based on minimum
142variance that has been widely used in integral imaging.
143Although in Ref. [31], an occlusion method for light fields is
144also proposed, this is not applicable to the case of an arbitrary
145flexible sensing setup due to the amount of disparity among the
146elemental images, which makes the occlusion problem worse
147than in usual integral imaging setups. In this sense, we have
148chosen an alternative occlusion method proposed in Ref. [32]
149and explained in Section 4.
150The rest of the paper is organized as follows. Section 2 pro-
151vides a brief explanation of how the calibration process has been
152solved in an arbitrary cameras setup. Section 3 explains the
153methodology proposed in this paper for robust depth estima-
154tion. Section 4 describes the creation of the depth map and the
155all-in-focus image estimation of the scene. Section 5 offers the
156results obtained by applying the techniques proposed here in
157real scenes and also discusses several aspects. Finally, several
158conclusions are given in Section 6.

1592. MULTI-CAMERA SELF-CALIBRATION

160Important advances have been recently made in the reconstruc-
161tion of 3D scenes from multiple views. In this sense, the review
162by Ref. [33] and the associated Middlebury evaluation frame-
163work represented a milestone after which a lot of research has
164been conducted focusing on the multi-view reconstruction
165of objects taken under strictly controlled imaging conditions.
166However, most of these algorithms are not directly suited to
167large-scale outdoor scenes.
168In a multi-view camera acquisition system, we also need a
169calibration algorithm that is sufficiently precise to be used for
170integral imaging techniques that may be able to perform well
171in outdoor scenes. In this section, we describe a calibration
172method and camera location for the case where the cameras
173have an arbitrary pose. The method is based on the work pro-
174posed in Ref. [30] for m-views using bundle adjustment for a
175projective reconstruction.
176Consider the case where a set of n 3D points Xj �
177�X j; Y j; Z j; 1�T ; j � 1;…; n are viewed by a set of m cameras
178with projection matrices Pi. Denote by xij � �xij; yij ; 1�T the co-
179ordinates of the j-th point as seen in the i-th camera. Our goal is
180to solve the reconstruction problem where, given a set of image
181coordinates xij, we aim to find the set of camera matrices Pi and
182their correspondence points Xj in the scene such that

xij � PiXj : (1)
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183 If the image correspondence measurements has a high number
184 of uncertainties, then Eq. (1) will not be satisfied exactly.
185 Thus, we wish to estimate the projection matrices P̂i and the
186 3D points X̂j that project exactly onto image points x̂ij as
187 x̂ij � P̂iX̂j. Likewise, we also seek to minimize the image dis-
188 tance between the reprojected points and detected (measured)
189 image points xij for every view in which the 3D point is seen.
190 This approximation (which minimizes the reprojection error) is
191 defined as bundle adjustment [34].
192 Equation (1), representing the projective mapping, can be
193 interpreted as true only up to a constant factor. Writing this
194 constant factor explicitly, we have

λijx
i
j � PiXj : (2)

195 Thus, the goal of the calibration is to estimate the scales λij and
196 the camera projection matrices Pi. The weighting factors λij are
197 called the projective depths of the points.
198 For the estimation of λij we have used Sturm and Triggs’
199 method, exploiting epipolar geometry to obtain these projective
200 depths [35]. In relation to the two alternative methodologies
201 proposed by the authors, the solution based on a central image
202 is more appropriate for wide baseline stereo, and it is the one
203 we used in this section (see Martinec and Pajdla [36] for more
204 details).
205 Provided that each point is visible in every view, we can put
206 all the points and camera projections into the W s matrix:

W s �

2
64
λ11x

1
1 … λ1nx1n

..

. ..
. ..

.

λm1 x
m
1 … λmn xmn

3
75 �

2
64 P1

..

.

Pm

3
75�X1…Xn�; (3)

207 where W s is called the scaled measurement matrix, P �
208 �P1…Pm�T and X � �X1…Xn�. P and X are referred to as
209 the projective motion and the projective shape, respectively [30].
210 If we collect enough noiseless points �xij; yij� and the scales λji
211 are known, then W s can be factored into P and X [35]. The
212 factorization of Eq. (3) retrieves the motion and shape through
213 a 4 × 4 projective transformation H :

W s � PX � PHH −1X � P̂ X̂ ; (4)

214 where P̂ � PH and X̂ � H −1X . The self-calibration process
215 computes a matrix H , such that P̂ and X̂ become Euclidean.
216 This process is sometimes called Euclidean stratification [30,37].
217 The matrix H can be solved by imposing certain geometrical
218 constraints. The most general constraint is the assumption that
219 some internal parameters of the cameras are the same.
220 In Ref. [36], projective reconstruction by factorization is
221 applied, handling perspective views and occlusions jointly.
222 The factorization algorithm also provides an optimal method
223 for computing the new image points when they are not visible
224 from all the cameras. In addition, the method proposed in
225 Ref. [30] fills the missing points (those with unknown depths).
226 This is implemented in two steps: first, triangulation to find the
227 pre-image X , and then the reprojection as PX to generate its
228 image in all views. In practice, triangulation and reprojection
229 provide a method of “filling in” points that are missed during
230 multiple view matching.
231 Another aspect to be considered is that lenses with short focal
232 lengths are often used in immersive environments to guarantee

233sufficient field of view. However, such lenses have significant
234nonlinear distortion, which has to be corrected for precise 3D
235computation. Therefore, a distortion model is applied to assess
236the radial and tangential distortion, aiming at eliminating these
237distortion effects of the lenses in the elemental images obtained
238by the cameras during the calibration process.

2393. PHOTO-CONSISTENCY RECONSTRUCTION
240BY IMAGE-BASED REPROJECTION

241In integral imaging, an optical display or computational
242reconstruction method can be used to visualize a 3D scene.
243In the computational reconstruction approach, the elemental
244images obtained during the acquisition stage are projected onto
245the image plane at an arbitrary distance through a real pinhole
246or lens. Because a 3D object can be viewed as the combination
247of multiple depth images, 3D information can be observed and
248analyzed by generating a series of depth images.
249For a flexible sensing setup, as is our case, we adapt the com-
250putational reconstruction used in integral imaging for a regular
251array of sensors to the case of a non-uniformly distributed flex-
252ible sensing integral imaging system, where the camera setup is
253not placed on a flat surface with known positions in a regular
254grid. Thus, an alternative strategy is to sweep a set of planes
255through the scene with respect to a reference camera [see
256Fig. 1(a)]. This is known as the plane sweep algorithm in the
257computer vision literature [38,39]. Sweeping to a depth D
258through a series of disparity hypotheses corresponds to mapping
259each input image into the reference camera defining the disparity
260space through a series of homographic transformations [38].
261We have the projection matrices of the different cameras
262obtained by the calibration method explained in the previous
263section. Therefore, the approach presented here is aimed at
264achieving a depth reconstruction of the objects that are ob-
265served from this reference camera c, which we call the central
266camera, and whose projection matrix is defined by Pc :R3 → R2.
267We denote I c :Ωc ⊂ R2 → Rd as the intensity of the image
268acquired by camera c in the set of pixels Ωc . In practice, the
269parameter d defines the information stored in the pixels by tak-
270ing the value d � 1 for grayscale images and d � 3 for RGB
271images. Thus,

Xc
j � P−1

πcZ
λcZx

c
j : (5)

272Let us consider that from the camera c we want to reproject
273the set of pixels Ωc onto a 3D plane called Plane πcZ , which is
274located at a distance Z with respect to its optical center.
275Therefore, let us define a reprojection from the camera c onto
276the plane by P−1

πcZ
:Pc�Ωc� → πcZ.

277During the calibration process, each detected 3D point in
278the scene [see Eq. (2)] has a scaling factor λij that is different,
279and it depends on the depth in relation to the camera. To gen-
280erate a 3D plane at a certain depth, we must only use a constant
281scale factor λcZ � Z . Depending on the applied factor in
282�Zmin; Zmax� on the image pixels, we can generate 3D points
283Xc

j on planes πcZ located at different depth ranges, as shown
284in Fig. 1(a).
285Every time we reproject the pixels of the image I c to a depth
286level Z , these 3D points can be seen by the rest of the cameras,
287and, therefore, their positions on their respective images can be

2
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288 estimated. Thus, the value of the image observed by camera i
289 via reprojection of the camera c will be expressed by

I i ∘ Pi ∘ P−1
πcZ
:Pc�Ωc� → Rd : (6)

290 When the plane is at the depth corresponding to the distance
291 that the object is situated with respect to the optical center of
292 the center camera and in the absence of occlusions, we can con-
293 sider that all cameras will observe the same image value [see
294 Fig. 1(b)], which is the principle of photo-consistency.

295 A. Photo-Consistency Measure

296 As indicated in the introduction, an accurate scene depth
297 estimation may be degraded by the shape of the objects or
298 by the intersection of objects with others seen by the different
299 cameras. Hence, the matching process between the different
300 views must handle projective distortion and partial occlusions.
301 The use of local as well as global image intensity information
302 can be exploited to improve the robustness to changes in ap-
303 pearance, without taking into account any approximation of
304 shape, motion, or visibility.
305 An example of occlusion due to a convex shape can be seen
306 in Fig. 2. We show a scheme with four cameras C1 to C4, pro-
307 ducing four images of an object with intensities I 1 to I 4. Each
308 3D point X projects on the positions x1 to x4 of the images in
309 the cameras. Model (object) point X projects to x2 and x3 with
310 intensities I 2 and I 3 but not in x1 and x4. Thus, the intensities
311 of I 1 and I 4 are not equal to I 2 and I 3. Needless to say, this
312 is just one of the ways in which occlusion occurs, and other
313 combinations can be produced.
314 The previous example does not satisfy the conditions of a
315 Lambertian lighting model, where image intensity or color
316 per pixel would be independent of the camera viewpoint.
317 Therefore, the image intensities at pixels x1 to x4 should be
318 identical apart from image noise and differences in the camera
319 responses. Let a set of optical images with intensity values be
320 �I1;…; Im�. Thus, we can project each 3D point of the object
321 Xj onto the corresponding pixel xij for each camera i. Then, the

322arithmetic mean associated to the pixel values of the images
323corresponding to an object point would be given by:

I j �
1

m

Xm
i�1

I i�xij�: (7)

324The variance between image intensities and the mean is
325defined as

V 2
j �

1

m

Xm
i�1

�I i�xij� − I j�2: (8)

326The variance criterion was one of the first photo-consistency
327criteria proposed and is also one of the most widely accepted.
328Because of the errors in the photo-consistency estimation
329introduced by occlusions, and taking into account that this fact
330worsens in an arbitrary flexible sensing setup, the previous
331arithmetic mean [see Eq. (7)] is computed by applying a vis-
332ibility criterion for each pixel Oi

occ�xij ; πcZ � that takes values 0 or
3331, considering two conditions. The first condition establishes
334that for those 3D points in the plane πcZ that are not visible for
335the other cameras, the visibility criterion of pixels takes the

F2:1Fig. 2. Projection with occlusions. All the cameras do not see the
F2:2same point in the scene.

F1:1 Fig. 1. (a) Reprojection and projection operations with respect to a point Xc
j on the plane πcZ . (b) Camera setup, with arbitrary distribution

F1:2 observing a point in the scene.
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336 value 0, otherwise it takes 1. As a second condition, we use the
337 asymmetrical occlusion model of Wei and Quan [32] to evalu-
338 ate the visibility of pixels Oi

occ�xij ; πcZ � for each level of Z . It is
339 defined as being 0 if there exists another pixel pij which projects
340 onto the same point in camera i as pixel xij and for which the
341 projected depth is less than that of xij, otherwise it is 1.
342 Therefore, the arithmetic mean associated to the pixel of the
343 central camera and its reprojection on the plane πcZ is given by:

I πcZ �j� �
Pm

i�1 I
i�xij�:Oi

occ�xij ; πcZ �Pm
i�1 O

i
occ�xij ; πcZ �

: (9)

344 In addition, the variance between image intensities would be:

V 2
πcZ �j� �

Pm
i�1 �I i�xij� − I πcZ �j��2:Oi

occ�xij ; πcZ �Pm
i�1 O

i
occ�xij ; πcZ �

: (10)

346 Algorithm 1: Depth map scene and all-in-focus image

347348 1: Procedure Flexible Sensing Integral Imaging by reprojection of 3D
349 planes
350 2: Input:
351 3: Ωc : set of pixels of central camera
352 4: Pi : set of camera projection matrices
353 5: I i : set of images captured by the cameras
354 6: zstep: distance in depth between two planes πcZ
355 7: Output:
356 8: Za � Zb � Zmin
357 9: while Zb <� Zmax do ▹ work with two depths Za and Zb
358 10: Zb � Zb � zstep
359 11: ∀ pixel xcj inΩc estimate 3D points Xc

j;Z a
in depth scene

360 by reprojection
361 12: ∀ pixel xcj in Ωc estimate 3D points Xc

j;Z b
in plane πcZ b

362 by reprojection
363 13: i � 1
364 14: while i <� m do ▹ m is the number of cameras
365 15: ∀ 3D point calculated, project xij;Z a

� PiXc
j;Z a

366 16: ∀ 3D point in plane πcZ b
, project xij;Z b

� PiXc
j;Z b

367 17: ∀ pixel xij store the intensities I i�xij;Z a
�, I i�xij;Z b

�.
368 18: Thus, store the visibility Oi

occ�xij;Z a
�, Oi

occ�xij;Z b
�

369 19: i � i � 1
370 20: return

371 21: ∀ pixel xcj estimate I πcZa �j� , I π
c
Zb �j�

, V 2
πcZa �j�

, V 2
πcZb �j�

372 22: IfZb � Zmin � zstep
373 23: ∀ pixel xcj estimate dPhotoπZa �xcj �
374 24: EndIf

375 25: ∀ pixel xcj estimate dPhotoπZb �xcj �
376 26: If dPhotoπZb �xcj � < dPhotoπZa �xcj �
377 27: dPhotoπZa �xcj � � dPhotoπZb �xcj � and Z step�xcj � � Zb

378 28: Else
379 29: Z step�xcj � � Za

380 30: EndIf
381 31: If Zb <� Zmax
382 32: Za ← Z step
383 33: EndIf
384 34: return IπcZa ; Z a

385 A drawback in this strategy is that it is usually applied as
386 a per-pixel photo-consistency measure. To give more ro-
387 bustness to noise and to be able to deal with realistic imaging

388conditions, pixel neighborhood imaging information should be
389incorporated.
390Authors in Ref. [31] estimate the depth of a scene by com-
391bining a defocus and a correspondence measure. However, they
392apply it to light fields where the object disparity in the elemen-
393tal images is small. That is not our case. On the other hand, the
394defocus measure allows an optimal contrast in a certain region
395of the image to be obtained, but occlusions and lighting
396changes may easily affect the measurement accuracy. The patch
397size may also affect the measure sensitivity because the defocus
398measure may exceed the patch size. Correspondence measurement
399allows depth to be estimated using photo-consistency, and it has
400been widely used in stereo problems. In this case, a statistical mea-
401sure is usually applied to resolve matching ambiguities.
402In our approach, we propose a photo-consistency measure
403where the first term (correspondence term) defines an initial

404cost function equal to the square root of the variance V 2
πcZ �j�

405[see Eq. (10)] in the plane πcZ for each point [see Fig. 1(a)].
406The second term (defocus term) acts locally and involves the

407reconstructed mean image intensities defined as I πcZ �j� in rela-
408tion to the intensities I c of the central camera. Thus, given a 3D
409point Xc

j reprojected from pixel xcj of the central camera in the
410plane πcZ , therefore,

PhotoπZ �xcj � �
� ffiffiffiffiffiffiffiffiffiffiffiffi

V 2
πcZ �j�

q
� jI πcZ �j� − I c�xcj �j

�
: (11)

411Moreover, we add neighborhood imaging information by
412applying a bifiltering technique with a spatial mean and a zero
413mean Gaussian kernel function Gs on the image intensity
414differences, centered on the current pixel around a window
415W defined asdPhotoπZ �xcj � � P

pci∈W
PhotoπZ �pcj �:Gs�jI c�pci � − I c�xci �j�P
pci∈W

Gs�jI c�pci � − I c�xci �j�
:

(12)

416The idea of using color differences as a range filter to esti-
417mate the photo-consistency value is based on the observation
418that whenever a change of depth edge appears, a color change
419usually occurs between background objects with respect to fore-
420ground objects. This can be useful for comparing neighbor-
421hoods that are photo-consistent with others that are not.
422Finally, the optimal depth is determined over all planes asdPhoto�xcj � � arg min

Z∈�Zmin ;Zmax�
dPhotoπZ �xcj �: (13)

4234. DEPTH MAP AND ALL-IN-FOCUS
424RECONSTRUCTION FOR FLEXIBLE SENSING

425Algorithm 1 is presented as an example of the application of the
426image reprojection and photo-consistency criterion on the re-
427constructed 3D planes proposed in the previous section. In this
428algorithm, the depth maps and all-in-focus images on a certain
4293D plane can be estimated. It also shows how a reprojection is
430performed with two depths Za and Zb. In the case of Za, the
431range of values changes as the algorithm steps forward in depth
432over the scene with respect to the central camera, assigning for
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433 each pixel xcj the level of depth corresponding to the lowest

434 photo-consistency value dPhotoπZa �xcj � assessed so far. In the
435 case of Zb, it acts like classical photo-consistency, generating
436 planes at different levels of depth.
437 Each of the 3D points generated by reprojections Xc

j;Z a
and

438 Xc
j;Z b

in the two proposed depth types is projected for each of

439 the cameras i in the pixels xij;Z a
and xij;Z b

storing the intensities

440 I i�xij;Z a
� and I i�xij;Z b

�, respectively. Furthermore, the visibility
441 of the projected pixels is assessed.
442 The main reason for the use of two levels is given by the
443 occlusion algorithm of Wei and Quan [32], which suggests that
444 if there is another pixel pij with depth Za that projects to the
445 same point in camera i as pixel xij and for which the projected
446 depth is less than that of xij projected in that step with depth
447 Zb, then the pixel can be occluded. For multiple pixels warped
448 into the same location, only the one with the smallest depth is
449 visible, and it occludes all other projections.
450 Once the internal loop has finished, we can estimate the
451 arithmetic mean of the intensities associated to the two types

452
of depth estimation, IπcZa and I π

c
Zb
, and their corresponding var-

453
iances between the image intensities V 2

πcZa
and V 2

πcZb
. With this

454 information, we can assess (for each pixel belonging to the
455 central camera) the proposed photo-consistency criterion and

456 make a comparison, updating dPhotoπZa �xcj � and its depth Za

457 if the photo-consistency criterion obtains a smaller value.
458 The algorithm satisfies the three specifications that were
459 considered in the Introduction section: (a) establish depth
460 planes where the objects that are at a specific scene depth
461 are in focus. This is obtained by means of the arithmetic mean

462 of the images IπcZb
. (b) We can create an all-in-focus image to

463 form the stack of depth images. This is a final by-product of the
464 algorithm obtained when we have the final depths of the scene
465 and project them over all the cameras. Observe that in Za we
466 have stored the depth values with the lowest photo-consistency
467 value reached until that depth plane. At the end of the loop in

468Zb � Zmax, we have the depth of scene in Za, and we can ob-

469tain the arithmetic mean of the images I πcZa . (c) A depth map of

470the scene can be built with the depth stored in Za when the
471algorithm finishes.

4725. RESULTS

473In this section, we will show some results obtained from using a
474flexible sensing setup. To show the capabilities of the proposed
475method, an experimental arrangement of the cameras, the
476in focus images obtained at different depths, and the depth
477map of the scene for some examples are described in the fol-
478lowing sections.

479A. Experimental Setup

480Regarding the image acquisition setup, a Norpix camera array
481consisting of 9 AVT Mako G–192C PoE CMOS cameras
482(1∕1.8 0 0) was used. Camera resolution was 1600 × 1200 pixels.
483The focal length of the optics used in the experiment was
48412.5 mm. The lenses were Ricoh 12.5–75 mm F1.8, manual
485focus.iris/zoom lens, C-mount, 2∕3 0 0 format, w/lock screws.
486The diagonal FOV was 39.3°. The software used for synch-
487ronized capturing was StreamPix6, for multiple camera use.
488The computer used to manage the entire system had a CPU
489Intel(R) Core(TM) i7 − 6700 K CPU at 4.0 GHz, and a speed
490of 2.5 GHz.
491Figure 3(b) shows a picture of the experimental setup, in-
492cluding the array of cameras (nine cameras) and the computer
493used to control them. The spatial arrangement of the different
494cameras was located at different heights and depths, which pro-
495duces a variation in the location of the objects and their size as
496seen by the different cameras. In addition, the cameras were
497positioned with arbitrary rotation to observe the scene from
498different points of view. As an example of what the cameras
499observe in the scene, we show four images (see Fig. 4). Camera
500number 6 [Fig. 4(c)] acted as the central camera, and the depth
501reconstruction of the scene was performed with respect to this
502camera. It can be observed that when choosing arbitrary posi-

F3:1 Fig. 3. (a) Centers and optical axes for the nine cameras of the setup are illustrated by solid lines in blue. Points in red represent the estimation of
F3:2 3D points that belong to the movable checkerboard calibration pattern. (b) Image of camera array setup used in the experiments.
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503 tions of objects at different depths in a complex scene, some
504 objects may be seen by some of the cameras and not by others.
505 This camera setup enlarges the common FOV observed by the
506 set of cameras, but it makes depth estimation of the objects in
507 the scene a difficult task.

508 B. Camera Calibration Process

509 To solve the calibration problem and therefore estimate the
510 matrix W s, it is necessary to have a set of image points.
511 Nevertheless, it is possible that the matrix may contain some
512 missing points. Thus, the more complete the matrix is, the
513 more accurate and stable the results achieved from the calibra-
514 tion process will be. Providing a correspondence between a set
515 of scene points that can be directly visible for all cameras is a
516 difficult task. Problems arise because the inaccuracies that are
517 generated in the correspondence between the points seen by the
518 different cameras may affect the calibration accuracy. Only
519 when the objects that appear in the scene have a high level
520 of texture detail is a robust correspondence likely to occur.
521 An example of this type of technique is the use of the scale-
522 invariant feature transform (SIFT), in combination with epipo-
523 lar geometry and maximum likelihood estimation in the pres-
524 ence of outliers [40].
525 In other scenes where these objects do not appear, it is pos-
526 sible to apply a moving calibration pattern in order to obtain
527 accurate information about this correspondence [41]. However,
528 the moving calibration pattern poses the same problem as the
529 direct acquisition of scene points in situations where the cam-
530 eras are far away, i.e., the correspondence points cannot be vis-
531 ible in all the views, and the partially calibrated structures have
532 to be chained together; this procedure is highly prone to errors.
533 In our case, we chose a movable checkerboard calibration pat-
534 tern, taking into account that the calibration method is able to
535 solve the existence of points that are not observed by all the
536 cameras. In Fig. 3(a), we show the camera centers and optical
537 axes for all cameras estimated during the calibration process.

538Points in red represent the estimation of 3D points that belong
539to the movable checkerboard calibration pattern.

540C. Focusing Images for Different Depths

541Computational reconstruction techniques in integral imaging
542allow calculation of the image of the scene in a certain plane
543so that the objects that are at that depth are in focus. Therefore,
544to demonstrate the application of the proposed 3D image plane
545reprojection and photo-consistency measure calculation for
546flexible sensing, let us show some examples of depth maps
547and the all-in-focus images obtained from real scenes.
548In Figs. 5(a)–5(e), we show five in-focus images of the scene
549estimated from different depth planes. To validate these im-
550ages, an estimation of the distance of the object from the cam-
551era array was obtained using a Laser Distance Measure Model
55240-6001 to measure the depth in meters of a set of objects in
553the scene [see Fig. 5(f )]. When observing the different images,
554it can be seen how the object in focus corresponds to a part of
555the scene with a sharp image while the rest of the scene is
556blurred. This is because when the plane is at the depth corre-
557sponding to that object, the cameras that see that object have
558the same distribution of intensities, and the object is photo-
559consistent at that depth.
560In these demanding real experimental conditions, there is
561no ground-truth available. Besides, the depth values that are
562given in Fig. 5(f ) are depth values taken with a laser measure
563system that points only to a part of the object, from a position
564close to the reference camera. Therefore, we cannot assign a
565depth to a complete object, and then these depth measures
566cannot be considered as measures for the object as a whole.
567Nevertheless, we confirmed that the reconstruction where the
568objects were in focus was the depth given by the laser measure
569system.
570The application of a flexible sensing setup with cameras at
571arbitrary positions and different relative rotations, and therefore
572with different directions for their optical axes, has both positive
573and negative effects. On the one hand, the positive effect is that
574by amplifying the common FOV observed by the set of cam-
575eras, the size of the 3D plane that all the cameras observe can be
576expanded in a larger region of the scene forming a common
577mosaic. However, in this work, given that we have used a small
578number of cameras for the experiments, we have chosen a
579conservative configuration and limited the number of repro-
580jected points in the reconstructed image planes to the number
581of pixels the central camera has.
582On the other hand, the downside effect is related to an effect
583that appears in the 3D reconstruction process and that consists
584in the tendency of the objects that are close to the cameras, once
585they are in focus, to expand their corresponding boundaries in
586the scene for images in focus at higher depths. This expansion
587effect has been observed in experiments performed in classical
588integral imaging from an array of cameras with parallel optical
589axes and varies depending on the value of the FOV and the
590distance between the cameras. This effect can be amplified
591when a flexible arrangement of cameras is used, since the varia-
592tion of where a close object is located by the different cameras is
593bigger. As an example, the position of the checkerboard shown
594in Figs. 5(c)–5(e) occupies an increasingly larger area, thus

F4:1 Fig. 4. Elemental images: (a) camera 1, (b) camera 2, (c) camera 6,
F4:2 and (d) camera 9.
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595 interfering with objects that, for greater depths, should be seen
596 sharply.

597 D. Depth Map and All-in-Focus Image

598 The two other aspects addressed in this work to show how
599 integral imaging techniques can be extended to the flexible
600 sensing approach are: the generation of an all-in-focus image
601 and its corresponding depth map.
602 To analyze the visual quality of the proposed photo-consis-
603 tency criterion, the results have been compared with those
604 obtained by the Min-Var method [21]. To do so, three scenes
605 have been analyzed, where the first one corresponds to the pre-
606 vious example of the scene that shows different objects on a
607 table, and the other two scenes basically consist of a person
608 making a gesture. Thus, two people are shown, focusing par-
609 ticularly on the reconstruction of the hand gesture and body of
610 the two subjects.
611 Figure 6 shows the results of these three scenes. The first row
612 shows the elemental images for the central camera. The second
613 row shows the results of the all-in-focus images as a function of
614 the depth estimation methodology proposed in this work. The
615 third row shows the depth map results obtained by theMin-Var
616 method, and the fourth row shows the depth map obtained by
617 the photo-consistency criterion used in this work.
618 The generation of an all-in-focus image has a strong depend-
619 ence on the photo-consistency criterion used because the im-
620 precisions that are generated during the reconstruction process
621 affect the degree of accuracy reached in the depth map. In the
622 same way, because the calculation of all-in-focus images is a
623 by-product of the depth map calculation, depth errors appear
624 as artifacts in the all-in-focus images. When comparing the

625elemental images (first row) with their corresponding all-in-
626focus images (second row), we may observe how some artifacts
627and noise appear in certain regions of the scene that do not
628allow the reconstruction to be clearly visualized. This noise
629occurs mainly in regions that are further away from the camera
630setup and close to objects that were in focus at a certain depth
631and have become defocused at greater depths.
632When we analyze the visual accuracy of the depth maps ob-
633tained by theMin-Var method (see depth maps in row three of
634Fig. 6), we must take into account that this method is based on
635a pixel-by-pixel variance of the RGB values obtained for the
636elemental images of each camera. We can see how this method
637is influenced by two circumstances: the first is given by the
638variance of intensities (called the “correspondence term” in this
639paper) between the cameras, and it is strongly influenced by the
640expansion effect we have previously mentioned. In addition,
641the occlusion between objects may make it difficult to find
642a precise correspondence of what the different cameras can ob-
643serve. The second circumstance is given by the pixel-by-pixel
644measurement that impedes the analysis of neighboring pixels.
645This produces a very noisy depth map on the object surfaces.
646Furthermore, the photo-consistency measure obtained is more
647sensitive in the case of objects containing textured surfaces that
648generate visual irregularity in the objects.
649In our work, we have also added a defocus term in order to
650measure the optimum contrast of one region of the scene that
651is focused at a specific depth. As with the correspondence
652term, occlusions or differences in pixel color distribution are
653related to the point of view of the scene of each camera.
654This fact may mean that object focusing can only be partially
655obtained, thereby degrading the performance of this measure.

F5:1 Fig. 5. (a)–(e) Reconstruction at the depth where the following objects are in focus: (a) the checkerboard; (b) first book; (c) second book; (d) the
F5:2 rear side of a projection screen; (e) the wall at the end of the room; (f ) measured depths with the laser rangefinder.
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656 An example of this type of situation is Fig. 5(c), where objects
657 near the checkerboard are severely affected (look at the book
658 inside the circle). Another problem that this measure presents
659 is the accuracy of the depth because the same object can be in
660 focus in an interval range of depths, especially if the object has
661 little texture.
662 When analyzing the visual results of the depth maps ob-
663 tained with the photo-consistency measure used in this work
664 (see depth maps in row four of Fig. 6), we can observe that
665 the use of a bifiltering strategy based on a mean spatial filter

666and a Gaussian kernel function for the intensity differences al-
667lows us to obtain results with a more homogeneous estimation
668of the object surface depth. In this case, the spatial kernel is
669centered at each individual pixel around a window W . This al-
670lows the cameras to be matched, while also adding neighborhood
671imaging information. Notice from the results that when applying
672the bifiltering process, the depth map contains lower noise, with
673smoother depth areas as a final result.
674In general terms, our method is more stable in fixing
675the correct depth of the objects since it takes into account

F6:1 Fig. 6. All-in-focus images and depth maps results. From top to bottom rows, the elemental images of the central camera, results of the all-in-focus
F6:2 images, depth map results obtained by the Min-Var method, and depth map results obtained by the photo-consistency measure used in this work.
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676 information of the neighboring pixels. Nevertheless, if depth
677 estimation is not correct, it not only affects a particular pixel,
678 but it also affects the pixels in its neighborhood. For instance,
679 we can see in rows 3 and 4 in Fig. 6 that the depth estimation
680 for the checkerboard and the books is more robust in our case
681 than for the Min-Var method. However, the depth estimation
682 in the black projection wall is worse in our case.

683 6. CONCLUSIONS

684 The present work has proposed a 3D reconstruction approach
685 based on integral imaging for a flexible sensing configuration of
686 the cameras. It considers that the scene is observed from notice-
687 ably different points of view in such a way that the regions of
688 the scene perceived by the cameras are difficult to match. The
689 method is based on the reprojection into 3D planes at different
690 depths that are orthogonal to the optical axis of a reference
691 camera called the central camera.
692 To carry out the reconstruction of the scene, a photo-
693 consistency measure combining a defocus and correspondence
694 measure has been proposed. In addition, to add information
695 from neighboring pixels, a bifiltering approach based on a mean
696 spatial filter and a Gaussian kernel function for the intensity
697 differences is applied. Based on the applied 3D plane recon-
698 struction and photo-consistency criterion, it has been shown
699 how some properties from integral imaging can be adapted
700 to this scenario. In particular, a depth estimation and an all-
701 in-focus image estimation algorithm are described to show how
702 they can be performed in a free sensing setup. Experimental
703 results show the feasibility of the proposed method and the level
704 of accuracy obtained despite the fact that the errors produced
705 by occlusions worsen in a free sensing setup. To tackle this
706 problem, an accurate multi-camera calibration method and
707 the 3D image plane reprojection approach are essential to ob-
708 tain satisfactory results.
709 The results obtained are generally consistent in real scenes
710 with different types of surfaces, although objects with a smooth
711 texture or changes due to brightness can affect the result.
712 A downside effect for objects close to the cameras is that, once
713 they are in focus, they tend to expand when reconstructing
714 planes through the scene at larger depths. This effect is ampli-
715 fied in the case of a flexible sensing configuration where the
716 optical axes are not parallel. Future work will be aimed at im-
717 proving the precision and visual quality of the generated depth
718 map, and also at incorporating other aspects such as depth map
719 regularization strategies, in an attempt to obtain smoother
720 depth maps inside homogeneous surface objects and sharp
721 estimations at depth discontinuities.
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