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HILBERT REGULARITY OF Z-GRADED MODULES
OVER POLYNOMIAL RINGS

WINFRIED BRUNS, JULIO JOŚE MOYANO-FERNÁNDEZ, AND JAN ULICZKA

ABSTRACT. Let M be a finitely generatedZ-graded module over the standard graded
polynomial ringR= K[X1, . . . ,Xn] with K a field, and letHM(t) = QM(t)/(1− t)d be
the Hilbert series ofM. We introduce the Hilbert regularity ofM as the lowest possible
value of the Castelnuovo-Mumford regularity for anR-module with Hilbert seriesHM.
Our main result is an arithmetical description of this invariant which connects the Hilbert
regularity ofM to the smallestk such that the power seriesQM(1− t)/(1− t)k has no
negative coefficients. Finally we give an algorithm for the computation of the Hilbert
regularity and the Hilbert depth of anR-module.

1. INTRODUCTION

This note can be considered as part of a program that aims at estimating numerical
invariants of a graded moduleM over a polynomial ringK[X1, . . . ,Xd] (K is a field) in
terms of the Hilbert seriesHM(t). For the notions of commutative algebra we refer the
reader to Bruns and Herzog [2]. Well-known examples of such estimates are the bound of
Bigatti [1] and Hulett [6] on the Betti numbers or the bound ofElias, Robbiano and Valla
[4] on the number of generators for ideals primary tom= (X1, . . . ,Xd).

A more recent result is the upper bound on depthM (or, equivalently, a lower bound
on projdimM) given by the third author [11], namely theHilbert depthHdepthM. It
is defined as the maximum value of depthN for a moduleN with HM(t) = HN(t). We
must emphasize that we will always consider the standard grading onR under which all
indeterminates have degree 1. As soon as this hypothesis is dropped, matters become
extremely difficult as witnessed by the paper [8] of the second and third author.

The objective of this paper is to bound the Castelnuovo-Mumford regularity regM in
terms ofHM(t). Of course, the bound is the lowest possible value of regN for a module
N with HM(t) = HN(t), which we termHilbert regularityHregM.

Both Hilbert depth and Hilbert regularity can be computed interms of Hilbert decom-
positions introduced by Bruns, Krattenthaler and Uliczka [3] for arbitrary gradings; for a
method computing Hilbert depth forZn-graded modules see Ichim and the second author
[7]. The approach by Hilbert decompositions is related to Stanley depth and Stanley reg-
ularity; see Herzog [5] for a survey. Stanley regularity forquotients by monomial ideals
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was considered by Jahan [10]. Also Herzog introduced Hilbert regularity via decomposi-
tions.

Write HM(t) = Q(t)/(1− t)d with d = dimM andQ∈ Z[t] (we may certainly assume
thatM is generated in degrees≥ 0). Then HdepthM = d−mwherem is the smallest value
of all natural numbersj such thatQ(t)/(1− t) j is a positive power series, i.e. a power
series with nonnegative coefficients [11]. (Note that the Hilbert seriesQ(t)/(1− t)d has
nonnegative coefficients.) Hilbert regularity cannot always be described in such a simple
way, but it is closely related to the smallestk for which Q(1− t)/(1− t)k is positive. See
Theorems 4.7 and 4.10.

Our main tool for the analysis of Hilbert series are presentations

H(t) =
k−1

∑
i=0

fit i

(1− t)n +
ctk

(1− t)n +
d−n−1

∑
j=0

g j tk

(1− t)d− j

that we call(n,k)-boundary presentationssince the pairs of exponents(u,v) occurring in
the numerator and the denominator of the termst i/(1− t)n, tk/(1− t)n, andtk/(1− t)d− j

occupy the lower and the right boundary of a rectangle in theu-v-plane whose right lower
corner is(k,n).

Using the description of Hilbert regularity in terms of Hilbert decompositions, one
sees easily that HregM is the smallestk for which a(0,k)-boundary representation with
nonnegativecoefficients fi , c, g j exists. (Without the requirement of nonnegativity the
smallest suchk is degHM(t).) The bridge to power series expansions ofQ(1− t)/(1− t)k

is given by the fact that the coefficientsg j appear in such expansions.
The paper is structured as follows: we introduce Hilbert regularity in Section 2, and

discuss boundary representations in Section 3. Hilbert regularity is then determined in
Section 4, whereas the last section 5 contains an algorithm that computes Hilbert depth
and Hilbert regularity simultaneously.

2. HILBERT REGULARITY

Let K be a field and letM be finitely generated graded module over a positively graded
K-algebraR. The Castelnuovo-Mumford regularity ofM is given by

regM = max{i + j : H i
m
(M) 6= 0}

wherem is the maximal ideal ofR generated by the elements of positive degree. IfR is a
polynomial ring, then, by a theorem of Eisenbud and Goto (see[2], 4.3.1)

regM = max{ j − i : TorRi (K,M) j 6= 0}.

whereK is naturally identified withR/m.

Definition 2.1. The (plain)Hilbert regularityof a finitely generated gradedR-module is

HregM = min{regN : HN(t) = HM(t)}

whereN ranges over the graded finitely generatedR-modules.

Let Fi be a graded free module overK[X1, . . . ,Xi], i = 1, . . . ,d, considered as anR-
module via the retractionR→ R[X1, . . . ,Xi] that sendsXi+1, . . . ,Xd to 0. The module
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F0⊕ ·· ·⊕Fd is called aHilbert decompositionof M if the Hilbert functions ofM and
F0⊕·· ·⊕Fd coincide. This leads us to the following definition:

Definition 2.2. Thedecomposition Hilbert regularityof M is

decHregM = min{regN : HN(t) = HM(t)}

where nowN ranges over direct sumsF0⊕·· ·⊕Fd, i.e., over the Hilbert decompositions
of M.

It is in particular clear that decHregM ≥ HregM. As we will see below, both num-
bers coincide in our setting of standard graded polynomial rings. But both definitions
make sense in much more generality if one replaces theK[X1, . . . ,Xi] by graded retracts of
K[X1, . . . ,Xd] (see [3]). In the more general setting the equality is a completely open prob-
lem, for regularity as well for depth. In fact, proving equality for depth in the multigraded
setting would come close to proving the Stanley conjecture for depth (see [5]).

Remark 2.3. (a) The notion of Hilbert decomposition is the same as that in[3], except
that theFi are further decomposed into cyclic modules there.

(b) Hilbert depth and Hilbert regularity are companions in the following sense: the
Hilbert depth determines the smallest width of a Betti tableadmitting the given Hilbert
series, Hilbert regularity determines the smallest such possible height. The Betti table is
given in terms of the graded Betti numbersβi, j = dimK TorRi (K,M) j by

β0,0 β1,1 . . . βp,p
...

...
...

β0,r β1,r+1 . . . βp,r+p

wherep= projdimM andr = regM.

The decomposition Hilbert regularity can be described in terms ofpositive representa-
tionsP = (Qd, . . . ,Q0) of the Hilbert series:

HM(t) =
Qd(t)

(1− t)d + · · ·+
Q1(t)
(1− t)1 +Q0(t),

where eachQi is polynomial with nonnegative coefficients. Such polynomials will be
callednonnegative. It is well-known that there is always a Hilbert decomposition of M.
This simple fact will be proved (again) in Proposition 2.5.

Let F0⊕·· ·⊕Fd be a Hilbert decomposition ofM. Then we have

HFi = Q(t)/(1− t)i

with a nonnegative polynomialQ, and we immediately get a positive representation of the
Hilbert series. Conversely, given a positive representation of the Hilbert series, one finds
a direct sumF0⊕·· ·⊕Fd by choosingFi as the free module overR[X1, . . . ,Xi] that hasai j

basis elements of degreei whereQi = ∑ j ai j t j .

Moreover, regFi = degQi , and therefore one has
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Proposition 2.4.

decHregM = min
P

max
i

degQi, P = (Qd, . . . ,Q0),

whereP ranges over the positive representations of HM(t).

For Hilbert depth one can similarly give a “plain” definitionor a “decomposition” def-
inition: TheHilbert depthof M is defined to be

HdepthM := max

{

r ∈ N

∣

∣

∣

∣

there is a f. g. gr.R-moduleN
with HN = HM and depthN = r.

}

.

The Hilbert depth ofM turns out to coincide with the arithmetical invariant

p(M) := max{r ∈ N | (1− t)rHM(t) is nonnegative} ,

called thepositivity of M, see Theorem 3.2 of [11]. The inequality HdepthM ≤ p(M)
follows from general results on Hilbert series and regular sequences. The converse can
be deduced from the main result of [11], Theorem 2.1, which states the existence of a
representation

HM(t) =
dimM

∑
j=0

Q j(t)

(1− t) j with nonnegative Q j ∈ Z[t, t−1].

The decomposition version, or positivity, is close to Stanley decompositions and Stan-
ley depth. The same holds true for Hilbert regularity, as we will see now; our proof will
also confirm the equivalence of the two notions of Hilbert depth.

Proposition 2.5. There exists a Hilbert decomposition of regularity equal toregM and
depth equal todepthM.

Proof. If M is a freeR-module, there is nothing to prove:M is already in Hilbert decom-
position form.

Now suppose thatM is not free. Letm be the maximal degree of a generator ofM.
Thenm≤ regM, and we can choose elementsv1, . . . ,vn ∈ M of degree≤ m such that
n= rankM andv1, . . . ,vn are linearly independent. (This is a well-known general position
argument; we may have to pass to an infinite fieldK, but that is no problem.) We set
Fn = Rv1+ · · ·+Rvn. For the sake of Hilbert series computations we can replaceM by
Fn⊕M/Fn.

Note that depthM/Fn = depthM since depthM < depthFn by assumption onM and
standard depth arguments. One has dimM/Fn < n since rankM/Fn = 0 as anR-module.

For the regularity we observe thatM/Fn is generated in degrees≤mand dimM/Fn < n.
SinceFn is free, TorRj (K,M/Fn)=TorRj (K,M) for j ≥ 2, and therefore 1 is the only critical
homological degree for the regularity ofM/Fn. There is a homogeneous exact sequence

TorR1(K,Fn) = 0→ TorR1(K,M)→ TorR1(K,M/Fn)→ TorR0(K,Fn)

Except for i ≤ m, TorR0(K,Fn)i = 0, and TorR1(K,M)i = TorR1(K,M/Fn)i . So the only
critical arithmetical degree ism. But we subtract 1 from the highest shift in homolog-
ical degree 1 in order to compute regularity, and it does not matter for the inequality
regM/Fn ≤ regM if TorR

1(K,M/Fn)i 6= 0 for somei ≤ m.
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On the other hand, regM ≤ max(regFn, regM/Fn), and altogether we conclude that
regM/Fn = regFn.

Let S= R/AnnM, and choose a degree 1 Noether normalizationR′ in S. We view
M/Fn first as a module overR′. Then

regRM/Fn = regSM/Fn = regR′ M/Fn

since regularity does not change under finite graded extensions. Now we can identifyR′

with one of the algebrasK[X1, . . . ,Xi] for somei < n. Hence we can proceed by induction
consideringM/Fn.

Eventually the procedure stops when the dimension of the Noether normalization has
reached the depth ofM since the quotient ofM reached then is free over the Noether
normalization, and we are in the case of a free module. �

Remark 2.6. The proof shows that regularity can be considered as a measure for filtra-
tions

0=U0 ⊂U1 ⊂ ·· · ⊂Uq = M

in whichUi+1/Ui is always a free module over some polynomial subquotient ofR: there
exists such a filtration in which each free module is generated in degree≤ regM, but there
is no such filtration in which all base elements have smaller degree. A similar statement
holds for depth.

Corollary 2.7.
HregM = decHregM.

In fact, if N is a module whose regularity attains the minimum, we can replace it by a
Hilbert decomposition as in Proposition 2.5.

A specific example: LetM be the first syzygy module of the maximal ideal in the poly-
nomial ringK[X1, . . . ,X5]. It has been shown in [3], Theorem 3.5, that it has multigraded
Stanley depth 4. It follows that the standard graded Hilbertdepth is also 4, but this much
easier to see: the Hilbert series is

10t2−10t3+5t4− t5

(1− t)5 =
10t2

(1− t)4 +
t4

(1− t)4 +
4t4

(1− t)5. (2.1)

So we can get away with the worst denominator(1− t)4 for the Hilbert depth.

Let us look at he Hilbert regularity: the decomposition

10t2−10t3+5t4− t5

(1− t)5 =
4t2

(1− t)5 +
3t2

(1− t)4 +
2t2

(1− t)3 +
t2

(1− t)2 (2.2)

shows that HregM = 2. It cannot be smaller sinceM has no generators in degree< 2.
On the other hand, the decomposition (2.2) is the only one with regularity 2–and it comes
from a filtration as in the proof of Proposition 2.5. (In this example HregM could be
determined more easily since HregM ≥ 2 and regM = 2.) This shows that in general one
cannot simultaneously optimize depth and regularity.

More generally: ifM is a module with all generators in degreer and of regularityr,
then HregM = regM.
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However, in general Hilbert regularity is smaller than regularity: let N be the sum of
the modules in the Hilbert decomposition (2.1), then HregN < regN as (2.2) shows.

A simple lower bound:

Proposition 2.8.
HregM ≥ degHM(t).

In fact, for j > HregM the Hilbert polynomial and the Hilbert function ofM coincide,
and the smallest numberk such that the Hilbert polynomial and the Hilbert function co-
incide in all degreesj > k is k= degHM(t), the degree ofHM as a rational function; see
[2], 4.1.12.

3. BOUNDARY PRESENTATION

In this section we introduce the fundamental tool for our examination of the Hilbert
regularity.

Definition 3.1. Let H(t) = Q(t)/(1− t)d. For integers 0≤ n ≤ d andk ≥ 0, an(n,k)-
boundary presentation ofH is a decomposition ofH in the form

H(t) =
k−1

∑
i=0

fit i

(1− t)n +
ctk

(1− t)n +
d−n−1

∑
j=0

g j tk

(1− t)d− j with fi ,c,g j ∈ Z. (3.1)

If c= 0 the boundary presentation is called corner-free.

Note thatQ(t)/(1− t)d can be viewed as a(d,degQ)-boundary presentation ofH. If
degQ≤ d there is also a(d−degQ,0)-boundary presentation: letQ(1− t) = ∑i q̃it i then

H(t) =
Q(t)

(1− t)d =
∑degQ

i=0 q̃i(1− t)i

(1− t)d =
degQ

∑
i=0

q̃i

(1− t)d−i .

In the sequel the polynomialQ(1−t) will be needed several times, therefore we introduce
the notation

Q̃(t) := Q(1− t)

for an arbitraryQ∈ Z[t].

Example 3.2.Let H(t) =
1−2t +3t3− t4

(1− t)3 . A (1,3)-boundary presentation ofH is given

by

H(t) =
1

1− t
+

2t2

1− t
+

2t3

(1− t)2 +
t3

(1− t)3 .

The term “boundary presentation” is motivated by visualisation of a decomposition of
a Hilbert series: A decomposition

Q(t)
(1− t)d =

d

∑
i=0

∑
j≥0

ai j
t j

(1− t)i

can be depicted as a square grid with the box at position(i, j) labeled byai j .
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0 1 2 3 4

0

1

2

3

1 0 2 0

2

1

0 1 2 3 4

0

1

2

3 1

−1

0

1

Two boundary presentations of(1−2t +3t2− t3)/(1− t)3.

In case of an(n,k)-boundary presentation the nonzero labels in this grid formthe bot-
tom and the right edges of a rectangle withd−n+1 rows andk+1 columns. The coef-
ficient in the “corner”(d−n,k) plays a dual role since it belongs to both edges, therefore
it is denoted by an extra letter.

Next we deduce a description for the coefficients in a boundary presentation:

Lemma 3.3.Let H(t)=Q(t)/(1−t)d be a series with(n,k)-boundary presentation (3.1).
Moreover let

Q(t)

(1− t)d−n =
∞

∑
i=0

ait
i and

Q̃(t)

(1− t)k =
∞

∑
i=0

bit
i,

then

fi = ai for i = 0, . . . ,k−1

c = ak−
d−n−1

∑
i=0

bi = bd−n−
k−1

∑
i=0

ai

g j = b j for j = 0, . . . ,d−n−1.

Proof. Multiplication of (3.1) by(1− t)n yields

Q(t)

(1− t)d−n =
k−1

∑
i=0

fit
i +ctk+

d−n−1

∑
j=0

g j tk

(1− t)d−n− j .

Hence thefi agree with the firstk coefficients of the power series∑∞
i=0ait i, while ak =

c+∑d−n−1
j=0 g j . Next we look at (3.1) witht substituted by 1− t:

Q(1− t)
td =

k−1

∑
i=0

fi(1− t)i

tn +
c(1− t)k

tn +
d−n−1

∑
j=0

g j(1− t)k

td− j .

This time we multiply bytd/(1− t)k and get

Q̃(t)

(1− t)k =
Q(1− t)

(1− t)k =
k−1

∑
i=0

fitd−n

(1− t)k−i +ctd−n+
d−n−1

∑
j=0

g jt
j ,

henceg j = b j for j = 0, . . . ,d−n−1 andc= bd−n−∑k−1
i=0 fi . �
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Since the coefficients in the power series expansion of a rational function are unique,
the previous lemma has an immediate consequence:

Corollary 3.4. The coefficients in an(n,k)-boundary presentation of H(t)=Q(t)/(1− t)d

are uniquely determined.

In the rest of the section we will make extensive use of the relation

t i

(1− t) j =
t i+1

(1− t) j +
t i

(1− t) j−1 , j > 1 (3.2)

i i+1

j−1

j 1 α

β

i i+1

j−1

j 0 α +1

β +1

Repeated application of this relation allows to transform an (n,k)-boundary presenta-
tion of a rational functionH into an(n−1,k) resp.(n,k+1)-boundary presentation. We
give a formula for the coefficients of the new boundary presentation in terms of the old
coefficients:

Lemma 3.5. Let

H(t) =
k−1

∑
i=0

fit i

(1− t)n +
ctk

(1− t)n +
d−n−1

∑
j=0

g j tk

(1− t)d− j

be an(n,k)-boundary presentation. Then there exists a corner-free(n,k+1)-boundary
presentation; its coefficients f(k+1),g(k+1) are given by

f (k+1)
i =







fi for i = 0, . . . ,k−1

c+∑d−n−1
r=0 gr for i = k

g(k+1)
j =

j

∑
r=0

gr , for j = 0, . . . ,d−n−1.

If n > 0 then there is also a corner-free(n−1,k)-boundary presentation with coefficients
f (n−1),g(n−1) given by

f (n−1)
i =

i

∑
r=0

fr , for i = 0, . . . ,k−1

g(n−1)
j =







g j for j = 0, . . . ,d−n−1

c+∑k−1
r=0 fr for j = d−n.

In particular, an expansion of a corner-free boundary presentation leads to a boundary
presentation with the entries next to the corner being equal.
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Corollary 3.6. Let

H(t) =
k−1

∑
i=0

fit i

(1− t)n +
d−n−1

∑
j=0

g j tk

(1− t)d− j

be a corner-free(n,k)-boundary presentation. If k>0 then there exists(n,k−1)-boundary
presentation; its coefficients f(k−1),c(k−1),g(k−1) are given by

f (k−1)
i = fi , for i = 0, . . . ,k−2

c(k−1) = fk−1−gd−n−1

g(k−1)
j =

{

g0 for j = 0
g j −g j−1 for j = 1, . . . ,d−n−1.

If n < d then there is also a(n+ 1,k)-boundary presentation with coefficients f(n+1),
c(n+1), g(n+1) given by

f (n+1)
i =

{

f0 for i = 0
fi − fi−1 for i = 1, . . . ,k−1

c(n+1) = gd−n−1− fk−1

g(n+1)
j = g j , for j = 0, . . . ,d−n−2.

Corollary 3.7. If a rational function H admits an(n,k)-boundary presentation then
there is also an(n′,k′)-boundary presentation for every pair(n′,k′) with n′ ≤ n, k′ ≥ k;
for (n′,k′) 6= (n,k) this presentation is corner-free. Moreover the coefficients of this
(n′,k′)-boundary presentation are nonnegative provided that the same holds for the(n,k)-
boundary presentation.

In particular there exists an(n,k)-boundary presentation ofQ(t)/(1− t)d for every
k ≥ degQ andn = 0, . . . ,d−1; note that in these cases the formula of Lemma 3.5 pro-
vides an alternative proof for the equality of the coefficients fi and the first coefficients of
Q(t)/(1− t)d−n. Analogously, ifd ≥ degQ the(d−degQ,0)-boundary presentation can
be expanded to an(n,k)-boundary presentation forn = 0, . . . ,d−degQ andk ≥ 1, also
confirming the description of theg j .

Corollary 3.8. If an (n,k)-boundary presentation is not corner-free, then it cannot be
obtained by expanding some(n′,k′)-boundary presentation with n′ ≥ n, k′ ≤ k.

Since any(n,k)-boundary presentation withk> degQ can be obtained as an expansion
of the(d,degQ)-boundary presentation ofQ(t)/(1− t)d, we get a second description of
the coefficientsg j :

Proposition 3.9. Let

H(t) =
Q(t)

(1− t)d =
k−1

∑
i=0

fit i

(1− t)n +
d−n−1

∑
j=0

g(k)j tk

(1− t)d− j
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with k> d. Then the coefficient g(k)j for j = 1, . . . ,d− n−1 agrees with the(k−1)-th

coefficient of the power series expansion of Q(t)/(1− t) j+1.

In particular for Q(t)/(1− t)k = ∑n≥0a(k)n tn andQ̃(t)/(1− t)k = ∑n≥0b(k)n tn we have

b(k)j = a( j+1)
k−1 for k≥ degQ and j= 0, . . . ,d−1.

Proof. Let 0≤ j ≤ d−1. We consider the(d−1− j,k)-boundary presentation ofH with
k > degQ. Since this can be viewed as an expansion of the corner-free(d,deg(Q)+1)-
boundary presentation

Q(t)

(1− t)d +
0 · tdeg(Q)+1

(1− t)d

we havef (d−1− j)
k−1 = g(k)j , so by Lemma 3.3g(k)j agrees with the(k−1)-th coefficient of

Q(t)

(1− t)d−(d−1− j)
=

Q(t)
(1− t) j+1 .

Expanding the(d−1− j,k)-boundary presentation downwards does not affectg(k)j , there-
fore this equality is also valid for any(n,k)-boundary presentation withn≤ d−1− j. The
second part follows immediately from Lemma 3.3. �

4. ARITHMETICAL CHARACTERIZATION OF THE HILBERT REGULARITY

In this section we continue our investigation of the Hilbertregularity, so we restrict our
attention to nonnegative seriesQ(t)/(1− t)d. As mentioned above, such a series admits
a Hilbert decomposition; it is easy to see that it also admitsa boundary presentation
with nonnegative coefficients. In the sequel such a boundarypresentation will be called
nonnegativefor short.

Lemma 4.1. Let H(t) =
d

∑
i=n

Qi(t)
(1− t)i be a Hilbert decomposition, and let k= maxi degQi .

Then there exists a nonnegative(n,k)-boundary presentation of H.

Proof. Obviously a Hilbert decomposition can be rewritten as
d

∑
i=n

Qi(t)
(1− t)i =

d

∑
j=n

k

∑
i=0

ai j t i

(1− t) j with ai j ∈ N. (4.1)

It is enough to show that this decomposition can be turned into one of the form
p

∑
j=n

k

∑
i=0

bi j t i

(1− t) j +
d

∑
j=p+1

bk jtk

(1− t) j with bi j > 0

for any p with n≤ p≤ d. Repeated application of the relation (3.2) yields
k

∑
i=0

bi j t i

(1− t) j =
k−1

∑
i=0

(∑i
r=0br j )t i

(1− t) j+1 +
(∑k

r=0br j )tk

(1− t) j .

Since the coefficients on the right-hand side are still nonnegative, the claim follows by
reverse induction onp≤ d, starting with the vacuous casep= d. �
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Corollary 4.2. (a) Let H(t) = Q(t)/(1− t)d be a nonnegative series. Then H admits a
nonnegative(0,HregH)-boundary presentation as well as a nonnegative(HdepthH,k)-
boundary presentation with suitable k≥ 0.
(b) If H admits a non-corner-free(0,k)-boundary presentation, thenHregH ≥ k.

Proof. The statement (a) is clear from the definition of HregH resp. HdepthH. For (b)
assume on the contrary HregH < k, thenH admits a(0,HregH)-boundary presentation,
and this presentation could be expanded to the(0,k)-boundary presentation, contradicting
Corollary 3.8. �

Remark 4.3. It is easily seen that, using relation (3.2), an(n,k)-boundary presentation
with n,k> 0 can be transformed into a non-corner-free(n−1,k−1)-boundary presenta-
tion. Hence if degQ> d the rational functionH admits a non-corner-free(0,degQ−d)-
boundary presentation; together with part (b) of the corollary this yields another proof of
Proposition 2.8.

Corollary 4.2 implies that, for computations of Hilbert regularity (and also of Hilbert
depth), we may exclusively consider boundary presentations. This observation leads to an
estimate for HregM in the flavour of the equality p(M) = HdepthM. In order to formulate
this inequality we need the following notion:

Definition 4.4. For anyQ∈Z[t] andk∈N, letQ(t)/(1−t)k=∑n≥0a(k)n tn. For anyd∈N

we set
δd(Q) := min

{

k∈ N | a(k)0 , . . . ,a(k)d−1 nonnegative
}

and

δ (Q) := min
{

k∈ N |
Q(t)

(1− t)k nonnegative
}

.

Note thatδd(Q) is finite if and only if the lowest nonvanishing coefficient ofQ is
nonnegative, as one sees easily by induction ond. By Theorem 4.7 in [11],δ (Q) is finite
if and only if Q viewed as a real-valued function of one variable takes positive values in
the open interval(0,1).

For a finitely generated gradedR-moduleM with Hilbert seriesHM(t) =
QM(t)

(1− t)dimM

the equality HdepthM = p(M) implies δ (QM) = dimM − HdepthM, so according to
Proposition 1.5.15 of [2] and the Auslander-Buchsbaum theorem,δ (QM) could be named
HprojdimM, the Hilbert projective dimension. Note that HprojdimM only depends on
QM but not on dimM.

The announced estimate for the Hilbert regularity reads as follows:

Proposition 4.5. Let H(t) = Q(t)/(1− t)d be a nonnegative series, then

HregH ≥ δd(Q̃).

Proof. SinceQ̃(0) = Q(1)> 0, δd(Q̃) is finite. Let HregH = k, then there exists a(0,k)-
boundary presentation

H(t) =
k−1

∑
i=0

fit
i +ctk+

d−1

∑
j=0

g j tk

(1− t)d− j
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with nonnegative coefficients. By Lemma 3.3 the firstd coefficients ofQ̃(t)/(1−t)k agree
with the coefficientsg j and so they are nonnegative, henceδd(Q̃)≤ k= HregH. �

Proposition 4.6. Under the hypothesis of Proposition 4.5 we even haveHregH ≥ δ (Q̃).

Proof. An (n,k)-boundary presentation ofQ(t)/(1− t)d induces an(n+m,k)-boundary
presentation ofQ(t)/(1− t)d+m, m∈ N, with the same coefficients. The(0,HregH)-
boundary presentation ofQ(t)/(1−t)d has nonnegative coefficients, hence the same holds
for the(m,HregH)-boundary presentation ofQ(t)/(1− t)d+m, and by Corollary 3.7 also
the (0,HregH)-boundary presentation ofQ(t)/(1− t)d+m is nonnegative. This implies
δd+m(Q̃)≤ HregH for all m∈ N, and soδ (Q̃)≤ HregH, as desired. �

Theorem 4.7. Under the hypothesis of Proposition 4.5 and the additional assumption of
either (i) δd(Q̃)≥ degQ or (ii) degQ≤ d we have

HregH = δd(Q̃) = δ (Q̃).

Proof. In both cases expansion of the(d,degQ) resp. the(d− degQ,0)-boundary pre-
sentation yields a(0,δd(Q̃))-boundary presentation ofH, which is nonnegative by the
nonnegativity ofH and the definition ofδd(Q̃), and hence

δd(Q̃)≥ HregH ≥ δ (Q̃)≥ δd(Q̃). �

The following example shows that, contrary to HdepthM ≤ p(M) in case of the Hilbert
depth, the inequality HregH ≥ δd(Q̃) may be strict.

Example 4.8.ForH(t) =
1− t +2t2−2t3+ t4

(1− t)2 we obtainQ̃(t) = Q(t) and therefore

Q̃(t)
1− t

=
Q(t)
1− t

= 1+0t +2t2+0t3+ ∑
n≥4

tn

impliesδ2(Q̃) = 1= HprojdimH. The(0,2)-boundary presentation ofH is given by

H(t) = 1+ t + t2+
t2

1− t
+

t2

(1− t)2 .

Since this is not corner-free, Corollary 3.8 implies HregH = 2> 1= δ2(Q̃). In particular

the Hilbert regularity ofQ(t)/(1− t)d depends ond: For H ′(t) =
1− t +2t2−2t3+ t4

(1− t)d

with d ≥ 4 we have HregH ′ = 1 by Theorem 4.7.

This example also explains why non-negativity ofQ̃(t)/(1− t)k for somek ∈ N does
not ensure HregH ≤ k: The decomposition

Q̃(t)
(1− t)k =

k

∑
i=0

Q̃i(t)
(1− t)i

with nonnegativeQ̃i ∈ Z[t] according to Theorem 2.1 in [11] can be turned into one of

Q(t)

(1− t)max{degQ̃i}
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by exchangingt and 1− t, but if d < max{degQ̃i} this does not yield a decomposition of
Q(t)/(1− t)d.

Due to the difficulty illustrated by the previous example thegeneral description of the
Hilbert regularity is less straightforward than that of theHilbert depth. In the remaining
case of degQ > d,δ (Q̃), the(0,degQ)-boundary presentation is nonnegative and hence
HregH ≤ degQ. If HregH < degQ then the(0,degQ)-boundary presentation can be
reduced to a nonnegative(0,k)-boundary presentation with smallerk. Such a reduction
could be performed in steps, therefore we investigate whether a reduction fromk to k−1
is possible:

Proposition 4.9. Let

H(t) =
k−1

∑
i=0

fit i

(1− t)n +
ctk

(1− t)n +
d−n−1

∑
j=0

g j tk

(1− t)d− j

with nonnegative coefficients. Then

HregH ≤ k−1⇐⇒







c = 0
fk−1 ≥ gd−n−1
g j+1 ≥ g j for j = 0, . . . ,d−n−2

Proof. “=⇒” Let HregH ≤ k−1, then there exists a boundary presentation

H(t) =
k−2

∑
i=0

f ′i t
i

(1− t)n +
c′tk−1

(1− t)n +
d−n−1

∑
j=0

g′jt
k−1

(1− t)d− j (4.2)

with nonnegative coefficients. By Lemma 3.5, this presentation can be transformed into

H(t) =
k−2

∑
i=0

fit i

(1− t)n +
(c′+∑d−n−1

j=0 g′j)t
k−1

(1− t)n +
d−n−1

∑
j=0

(∑ j
i=0g′i)t

k

(1− t)d− j ,

and by uniqueness of the(n,k)-boundary presentation we have

fk−1 = c′+
d−n−1

∑
j=0

g′j ≥
d−n−1

∑
j=0

g′j = gd−n−1.

The necessity of the other conditions was already noted in Corollary 4.2 (b) and Proposi-
tion 4.5.

“⇐=” If the conditions on the right are satisfied then Corollary 3.6 yields a nonnegative
(0,k−1)-boundary presentation (4.2). �

The (0,HregH)-boundary presentation can be achieved by iterated reduction steps
starting from the(0,degQ)-boundary presentation. The reduction continues as long as
the conditions of the previous proposition remain valid. Hence it stops in one of the three
cases illustrated by the following diagrams
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δd

a0 . . . ak−1 6= 0

bd−1

...

δd

a0 . . . ak−1 0

bd−1

...

<

δd

a0 . . . ak−1 0

bd−1

<

...

b j+1

b j

The construction of the(0,HregH)-boundary presentation can be described as fol-
lows: Starting withk = degQ we consider the(0,k)-boundary presentation. As long

ask> δd(Q̃) and fk−1 = g(k)d−n−1 there is also a nonnegative and corner-free(0,k− 1)-
boundary presentation, so we continue withk−1 instead ofk. As soon ask = δd(Q̃) or

fk−1 6= g(k)d−n−1 we have reached the minimalk for which a nonnegative and corner-free

(0,k)-boundary presentation exists. Ifk= δd(Q̃) or fk−1 < g(k)d−n−1 no further reduction is

possible, hence HregH = k, but if k> δd(Q̃) and fk−1 ≥ g(k)d−n−1 one last reduction step,
leading to a non-corner-free boundary presentation, can beperformed, so HregH = k−1
in this case.

Theorem 4.10.Let H(t) =Q(t)/(1− t)d = ∑n≥0antn be a nonnegative series with d> 0,

and letQ̃(t)/(1− t) j = ∑n≥0b( j)
n tn for j ∈ N.

(i) If degQ≤ d or δd(Q̃)≥ degQ, thenHregH = δd(Q̃).
(ii) Otherwise, with

k := min{i | δd(Q̃)≤ i ≤ degQ and aj = b( j+1)
d−1 for all j = i, . . . ,degQ}

we have

HregH =

{

k if k= δd(Q̃) ∨ ak−1 < b(k)d−1

k−1 if k > δd(Q̃) ∧ ak−1 > b(k)d−1.

Proof. The cases in (i) were already treated in Theorem 4.7. Part (ii) follows from the
discussion preceding this theorem; the numberk, which is well-defined by Proposition
3.9, is just the width of the minimal nonnegative and corner-free boundary presentation.

�

The closing result of this section is the analogue of Proposition 4.6 forδ (Q).

Lemma 4.11.Let H(t)=Q(t)/(1−t)d be nonnegative and e:=max{δd(Q̃),deg(Q)+1}.
Thenδ (Q) = δe(Q)

Proof. The(d−δe(Q),δe(Q))-boundary presentation ofH is nonnegative by Lemma 3.3
and the definition ofδd(Q̃) andδe(Q). Hence the(d−δe(Q),δe+m(Q))-boundary presen-
tation withm≥ 0 is nonnegative as well, but this impliesδe+m(Q)≤ δe(Q) for all m∈ N,
thereforeδ (Q) = δe(Q). �
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5. COMPUTATION OF HILBERT DEPTH AND HILBERT REGULARITY

The aim of this section is an algorithm for computing the Hilbert depth and Hilbert
regularity of a module with given Hilbert seriesH(t) = Q(t)/(1− t)d. An algorithm
solely for the Hilbert depth was given by A. Popescu in [9].

Algorithm 5.1: Computing Hilbert depth and Hilbert regularity

Input : Q∈ Z[t],d ∈ Z with H(t) = Q(t)/(1− t)d nonnegative
1 Q̃(t) := Q(1− t);

2 - - Determineδd(Q̃):
k :=−1;
repeat

k := k+1;

Compute the firstd coefficientsb(k)0 , . . . ,b(k)d−1 of Q̃(t)/(1− t)k;

until b(k)0 , . . . ,b(k)d−1 nonnegative;
δd(Q̃) = k;

3 - - Determine HprojdimH:
e := max{δd(Q̃),deg(Q)+1};
k :=−1;
repeat

k := k+1;

Compute the firstecoefficientsa(k)0 , . . . ,a(k)e−1 of Q(t)/(1− t)k;

until a(k)0 , . . . ,a(k)e−1 nonnegative;
HprojdimH = k;

4 HdepthH = d−HprojdimH;

5 - - Determine HregH:
if degQ≤ d or δd(Q̃)≥ degQ then

HregH = δd(Q̃);
else

Compute thei-th coefficientai of H for i = 0, . . . ,degQ;

Compute the(d−1)-th coefficientb( j)
d−1 of

Q̃(t)
(1− t) j for j = δd(Q̃), . . . ,degQ;

k := min{i | δd(Q̃)≤ i ≤ degQ anda j = b( j+1)
d−1 for all j = i, . . . ,degQ};

if ak−1 ≥ b(k)d−1 and k> δd(Q̃) then
HregH = k−1;

else
HregH = k;

end
end
Output : HdepthH,HregH



16 WINFRIED BRUNS, JULIO JOŚE MOYANO-FERNÁNDEZ, AND JAN ULICZKA

The correctness of this algorithm follows immediately fromthe previous results. The
output could be easily extended by the boundary presentations realising Hdepth or Hreg,
since the required coefficients are computed in the course; for example, a nonnegative
boundary presentation of the minimal height HdepthH is given by

H(t) =
e−1

∑
i=0

a(h)i t i

(1− t)h +



































d−h−1

∑
j=0

a( j+1)
e−1 te

(1− t)d− j for e= degQ> δd(Q̃)

d−h−1

∑
j=0

b(δd(Q̃))
j te

(1− t)d− j for e= δd(Q̃)≥ degQ

with a andb used as in the description of the algorithm, andh := HprojdimH.

For completeness we give an upper bound for the number of repetitions of the loop in
the second step of Algorithm 5.1. The idea is to replaceQ̃(t) = ∑i q̃it i with a polynomial

q̃0+ rt such that for alln, i ∈ N the coefficientc(k)n of (q̃0+ rt )/(1− t)k is not greater

than the coefficientb(k)n of Q̃(t)/(1− t)k. Such a polynomial can be obtained by repeated
application of the map

f =
m

∑
i=0

hit
i 7−→

m−2

∑
i=0

hit
i +min{hm−1,hm−1+hm}tm−1

to the polynomialQ̃. Since

q̃0+ rt

(1− t)k = ∑
n≥0

[

q̃0

(

n+k−1
n−1

)

+ r

(

n+k−2
n−2

)]

tn

= ∑
n≥0

[

∏k−2
j=0(n+ j)

k!
(q̃0(n+k−1)+ r(n−1))

]

tn,

we want to determine the leastk such that

q̃0(n+k−1)+ r(n−1) = (q̃0+ r)(n−1)+kq̃0 ≥ 0 (5.1)

holds for 0≤ n≤ d−1. Without loss of generality we may assumeq+ r < 0. Then (5.1)
is equivalent to

n≤ 1−
q̃0k

q̃0+ r
.

This inequality has to be valid in particular forn= d−1, and so for

k≥
(2−d)(q̃0+ r)

q̃0

the firstd coefficients of(q̃0+ rt )/(1− t)k and a fortiori those of̃Q(t)/(1− t)k are non-
negative.
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Example 5.2. Let H(t) =
2−5t+ t2+4t3

(1− t)7 . ThenQ̃(t) = Q(1− t) = 2−9t +13t2−4t3

and we findδ7(Q̃) = 7 since

Q̃(t)
(1− t)5 = 2+ t −2t2−4t3+0t4+17t5+56t6+ . . .

Q̃(t)
(1− t)6 = 2+3t + t2−3t3−3t4+14t5+70t6+ . . .

Q̃(t)
(1− t)7 = 2+5t +6t2+3t3+0t4+14t5+84t6+ . . .

In order to determine the Hilbert depth we compute the firstδ7(Q̃) = 7 coefficients of
Q(t)/(1− t)k for k≥ 0. Since

Q(t)

(1− t)5 = 2+5t+6t2+4t3+0t4−3t5+0t6+ . . .

Q(t)
(1− t)6 = 2+7t+13t2+17t3+17t4+14t5+14t6+ . . .

we have HdepthH = 7−6 = 1. The Hilbert regularity requires no further computations
since degQ= 3< 7= d, and so HregH = δ7(Q̃) = 7; moreover in this case the boundary
presentation

H(t) =
2+7t+13t2+17t3+17t4+14t5+14t6

1− t

+
14t7

(1− t)2 +
3t7

(1− t)4 +
6t7

(1− t)5 +
5t7

(1− t)6 +
2t7

(1− t)7

simultaneously has the minimal height HdepthH and the minimal width HregH.

Finally we give two examples illustrating the case HregH > δd(Q̃).

Example 5.3.Let H(t) =
1− t + t3

(1− t)2 . ThenQ̃(t) = 1−2t+3t2− t3 andδ2(Q̃) = 2. Since

degQ exceedsδd(Q̃) as well asd, the final loop of our algorithm applies. By

Q(t)
(1− t)2 = 1+ t + t2+2t3+ . . .

Q̃(t)
(1− t)2 = 1+0t + . . .

Q̃(t)
(1− t)3 = 1+ t + . . .

we findk= 2= δ2(Q̃), hence HregH = 2.
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0 1 2 3

0

1

2 1 −1 0 1

0 1 2 3

0

1

2

1 1 1

1

1

0

0 1 2 3

0

1

2

1 1 0

0

1

H(t) = (1− t + t3)/(1− t)2.

This example confirms that HregH = δd(Q̃) may also occur if degQ> d,δd(Q̃).

Example 5.4. For H(t) =
1− t+2t2− t3

(1− t)2 we haveδ2(Q̃) = 1, and the calculations can

be summarized by

0 1 2 3

0

1

2 1 −1 2 −1

0 1 2 3

0

1

2

1 1 3

3

1

0

0 1 2 3

0

1

2

1 1 0

2

1

H(t) = (1− t +2t2− t3)/(1− t)2.

The third subcase of HregH > δd(Q̃), leading to a non-corner-free(0,HregH)-boundary
presentation, already appeared in Example 4.8.
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OSNABRÜCK, GERMANY

E-mail address: juliczka@uos.de


	1. Introduction
	2. Hilbert regularity
	3. Boundary presentation
	4. Arithmetical characterization of the Hilbert regularity
	5. Computation of Hilbert depth and Hilbert regularity
	References

