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HILBERT REGULARITY OF Z-GRADED MODULES
OVER POLYNOMIAL RINGS

WINFRIED BRUNS, JULIO JO§ MOYANO-FERNANDEZ, AND JAN ULICZKA

ABSTRACT. Let M be a finitely generatel-graded module over the standard graded
polynomial ringR = K[Xg,...,Xy] with K a field, and letHw (t) = Qu(t)/(1—1)9 be
the Hilbert series oM. We introduce the Hilbert regularity &l as the lowest possible
value of the Castelnuovo-Mumford regularity for Brmodule with Hilbert serie$ly .
Our main result is an arithmetical description of this inaat which connects the Hilbert
regularity ofM to the smallesk such that the power seri&(1—1)/(1—t)% has no
negative coefficients. Finally we give an algorithm for thmmputation of the Hilbert
regularity and the Hilbert depth of @&module.

1. INTRODUCTION

This note can be considered as part of a program that aimgiata¢éisg numerical
invariants of a graded moduld over a polynomial ring<[Xy,...,Xq] (K is a field) in
terms of the Hilbert serieBly(t). For the notions of commutative algebra we refer the
reader to Bruns and Herzad [2]. Well-known examples of sstimates are the bound of
Bigatti [1] and Hulett[[6] on the Betti numbers or the boundahiis, Robbiano and Valla
[4] on the number of generators for ideals primaryite= (Xy, ..., Xq).

A more recent result is the upper bound on déptfor, equivalently, a lower bound
on projdimM) given by the third author [11], namely theilbert depthHdepthM. It
is defined as the maximum value of deptlior a moduleN with Hy (t) = Hn(t). We
must emphasize that we will always consider the standamirggaonR under which all
indeterminates have degree 1. As soon as this hypothesisppetl, matters become
extremely difficult as withessed by the paper [8] of the secamd third author.

The objective of this paper is to bound the Castelnuovo-Muithfegularity regv in
terms ofHy (t). Of course, the bound is the lowest possible value of\régy a module
N with Hy (t) = Hn(t), which we termHilbert regularity HregM.

Both Hilbert depth and Hilbert regularity can be computeteims of Hilbert decom-
positions introduced by Bruns, Krattenthaler and UlicZBEfdr arbitrary gradings; for a
method computing Hilbert depth f@"-graded modules see Ichim and the second author
[7]. The approach by Hilbert decompositions is related emf&ty depth and Stanley reg-
ularity; see Herzog |5] for a survey. Stanley regularity doiotients by monomial ideals
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was considered by Jahan [10]. Also Herzog introduced Hillsgularity via decomposi-
tions.

Write Hy (t) = Q(t)/(1—1t)4 with d = dimM andQ € Z]t] (we may certainly assume
thatM is generated in degrees0). Then HdeptM = d —mwheremis the smallest value
of all natural numberg such thatQ(t)/(1—t)! is a positive power series, i.e. a power
series with nonnegative coefficients [11]. (Note that thibétt serieQ(t)/(1—t)9 has
nonnegative coefficients.) Hilbert regularity cannot afevae described in such a simple
way, but it is closely related to the smallésfor which Q(1—t)/(1—t)Kis positive. See
Theorem$§ 4]7 arld 4.110.

Our main tool for the analysis of Hilbert series are prestdm’la

k-1 f,ti k d—n-1

H(t)zi;(llw Tt Z) —th

that we call(n,k)-boundary presentatiorsince the pairs of exponen(s,v) occurring in
the numerator and the denominator of the tetm&l —t)", t</(1—t)", andtk/(1—t)d-]
occupy the lower and the right boundary of a rectangle iruthigplane whose right lower
corner is(k, n).

Using the description of Hilbert regularity in terms of Haith decompositions, one
sees easily that Hréd is the smallesk for which a (0, k)-boundary representation with
nonnegativecoefficientsfi, ¢, g; exists. (Without the requirement of nonnegativity the
smallest suck is degHw (t).) The bridge to power series expansionot —t) /(1 —t)K
is given by the fact that the coefficierdg appear in such expansions.

The paper is structured as follows: we introduce Hilberutagty in Sectioi 2, and
discuss boundary representations in Sedtion 3. Hilbetlaeity is then determined in
Section 4, whereas the last sectidn 5 contains an algorttatncomputes Hilbert depth
and Hilbert regularity simultaneously.

2. HILBERT REGULARITY

LetK be afield and leM be finitely generated graded module over a positively graded
K-algebraR. The Castelnuovo-Mumford regularity bf is given by

regM = max{i + j : H! (M) # 0}

wherem is the maximal ideal oR generated by the elements of positive degre® iff a
polynomial ring, then, by a theorem of Eisenbud and Goto [@g4.3.1)

regM = max{j —i : Tor{(K,M); # 0}.

whereK is naturally identified witiR/m.

Definition 2.1. The (plain)Hilbert regularity of a finitely generated gradd@tmodule is
HregM = min{regN : Hn(t) = Hu(t)}

whereN ranges over the graded finitely generaethodules.

Let F be a graded free module ovE(Xi,...,X], i = 1,...,d, considered as aR-
module via the retractioR — R[Xj,...,X] that sendsX;1,...,Xg to 0. The module
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Fo® - - @ Fy is called aHilbert decompositiorof M if the Hilbert functions ofM and
Fo® - -- @ Ky coincide. This leads us to the following definition:

Definition 2.2. Thedecomposition Hilbert regularitgf M is
decHregVl = min{regN : Hn(t) = Hm(t)}

where nowN ranges over direct sunkg & - - - d Fy, i.e., over the Hilbert decompositions
of M.

It is in particular clear that decHrég > HregM. As we will see below, both num-
bers coincide in our setting of standard graded polynonmgs: But both definitions
make sense in much more generality if one replacekiKe, ..., X] by graded retracts of
K[Xq,...,Xq] (seel3]). Inthe more general setting the equality is a cetefyt open prob-
lem, for regularity as well for depth. In fact, proving eqgtyafor depth in the multigraded
setting would come close to proving the Stanley conjectorelépth (see |[5]).

Remark 2.3. (a) The notion of Hilbert decomposition is the same as th§Bjinexcept
that thel are further decomposed into cyclic modules there.

(b) Hilbert depth and Hilbert regularity are companionshe following sense: the
Hilbert depth determines the smallest width of a Betti taddenitting the given Hilbert
series, Hilbert regularity determines the smallest sudsite height. The Betti table is
given in terms of the graded Betti numbgg = dimk ToriR(K, M); by

Boo Bri --- Bpp

BOJ [317r+1 Bp,r+p
wherep = projdimM andr = regM.

The decomposition Hilbert regularity can be described imseofpositive representa-
tions & = (Qq, - .., Qo) of the Hilbert series:

_ Q) Qu(t)
- (1 (1-1)

where eachQ; is polynomial with nonnegative coefficients. Such polynalsiwill be
callednonnegative It is well-known that there is always a Hilbert decompasitof M.
This simple fact will be proved (again) in Proposition]2.5.

Hwm(t)

+Qo(t),

LetFo®--- @ F4 be a Hilbert decomposition &fl. Then we have
Hr = Q(t)/(1—t)'

with a nonnegative polynomi&), and we immediately get a positive representation of the
Hilbert series. Conversely, given a positive represematif the Hilbert series, one finds
adirect sunfy @ - - - @ Fq by choosing as the free module ov&{Xy, ..., X that hasy;;
basis elements of degreehereQ; = 3 ; aijtj.

Moreover, redr = degQ;, and therefore one has
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Proposition 2.4.
decHredVl = mjj}nm.axdegQi, P = (Qq,---,Q0),
9 |

where 2 ranges over the positive representations @f(H.

For Hilbert depth one can similarly give a “plain” definition a “decomposition” def-
inition: TheHilbert depthof M is defined to be

there is a f. g. griR-moduleN

with Hy = Hy and deptiN =r.

The Hilbert depth oM turns out to coincide with the arithmetical invariant
p(M):=max{r € N | (1—t)"Hu(t) is nonnegativg,

called thepositivity of M, see Theorem 3.2 of [11]. The inequality Hdepthi p(M)
follows from general results on Hilbert series and reguégquences. The converse can
be deduced from the main result of [11], Theorem 2.1, whielestthe existence of a
representation

HdepthM := max{r eN

dimM Q(t) ‘ . B
Hwm(t) = 1; (1J—t)i with nonnegative Q; € Z[t,t 1.

The decomposition version, or positivity, is close to S¢égrdecompositions and Stan-
ley depth. The same holds true for Hilbert regularity, as vilesge now; our proof will
also confirm the equivalence of the two notions of Hilbertttep

Proposition 2.5. There exists a Hilbert decomposition of regularity equateégM and
depth equal talepthM.

Proof. If M is a freeR-module, there is nothing to prov#! is already in Hilbert decom-
position form.

Now suppose tha¥l is not free. Letm be the maximal degree of a generatorbf
Thenm < regM, and we can choose elements...,v, € M of degree< m such that
n=rankM andvy, ...,V are linearly independent. (This is a well-known generaltpms
argument; we may have to pass to an infinite figldbut that is no problem.) We set
Fn =Rw +---+ Rw,. For the sake of Hilbert series computations we can replhdsy
Fr®M/F,.

Note that deptM /F, = depthM since deptiM < depthR, by assumption oM and
standard depth arguments. One hasMiff, < n since raniM /K, = 0 as arR-module.

For the regularity we observe thdt/F, is generated in degreesmand dinM /F, < n.
SinceF, is free, Toij(K, M/Fy) = TorJR(K, M) for j > 2, and therefore 1 is the only critical
homological degree for the regularity bf/F,. There is a homogeneous exact sequence

TorX (K, Fn) = 0 — Tor}(K,M) — Tor}(K,M/Fn) — Torj(K, Fy)

Except fori < m, Torij(K,Fn)i = 0, and ToR(K,M); = Tor}(K,M/F,)i. So the only
critical arithmetical degree is. But we subtract 1 from the highest shift in homolog-
ical degree 1 in order to compute regularity, and it does natten for the inequality
regM/Fn < regM if Tor}(K,M/Fy); # 0 for some < m.
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On the other hand, réd < max(regk,,regM/F,), and altogether we conclude that
regM /F, = regh,.

Let S= R/AnnM, and choose a degree 1 Noether normalizaRom S. We view
M /F, first as a module oveR. Then

reeM/Fn =reggM /Ry = regy M/F,

since regularity does not change under finite graded exteasNow we can identifi¥
with one of the algebral&[X, ..., X;] for somei < n. Hence we can proceed by induction
consideringM /F,.

Eventually the procedure stops when the dimension of thel¢o@ormalization has
reached the depth d#l since the quotient oM reached then is free over the Noether
normalization, and we are in the case of a free module. OJ

Remark 2.6. The proof shows that regularity can be considered as a me&aufiltra-
tions

O0=UpCcUiC---CUg=M
in whichUj,1/U; is always a free module over some polynomial subquotieRt dhere
exists such a filtration in which each free module is gendrisieegree< regM, but there
is no such filtration in which all base elements have smakgrrele. A similar statement
holds for depth.

Corollary 2.7.
HregM = decHregM.

In fact, if N is a module whose regularity attains the minimum, we caracspit by a
Hilbert decomposition as in Propositibn R.5.

A specific example: LeWl be the first syzygy module of the maximal ideal in the poly-
nomial ringK[Xy,...,Xs]. It has been shown in[3], Theorem 3.5, that it has multigtade
Stanley depth 4. It follows that the standard graded Hildepth is also 4, but this much
easier to see: the Hilbert series is

102 - 1083 +5t4 —t> 102 t4 44
5 = 7+ it E. (2.1)
(1-1) 1-t)* (1-t)* (1-1t)
So we can get away with the worst denomindtbr-t)# for the Hilbert depth.
Let us look at he Hilbert regularity: the decomposition
1062 — 103 + 5t —t° 4t? 3t2 2t2 t2
3 = 5T 7T 3+ 5 (2.2)
(1-1) (1-t)> (1-t)* (1—-t)° (1-1t)

shows that Hretyl = 2. It cannot be smaller sindd has no generators in degree2.
On the other hand, the decompositibn[2.2) is the only onle regularity 2—and it comes
from a filtration as in the proof of Propositibn 2.5. (In thisaeple HredM could be
determined more easily since Hidg> 2 and redV = 2.) This shows that in general one
cannot simultaneously optimize depth and regularity.

More generally: ifM is a module with all generators in degneand of regularityr,
then HregVl = regM.
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However, in general Hilbert regularity is smaller than regiy: let N be the sum of
the modules in the Hilbert decomposition (2.1), then Hieg regN as [2.2) shows.
A simple lower bound:

Proposition 2.8.
HregM > degHwm ().

In fact, for j > HregM the Hilbert polynomial and the Hilbert function & coincide,
and the smallest numb&rsuch that the Hilbert polynomial and the Hilbert functiorr co
incide in all degreeg > k is k = degHwu (t), the degree ofy as a rational function; see
2], 4.1.12.

3. BOUNDARY PRESENTATION

In this section we introduce the fundamental tool for ournexation of the Hilbert
regularity.

Definition 3.1. Let H(t) = Q(t)/(1—t)%. For integers 6< n < d andk > 0, an(n,k)-
boundary presentation &f is a decomposition dfl in the form

k1 fiti ctk d—n-1 gjtk
= 9 with fi,c,g; € Z. 1
Y i;) @—tn ' @d-on j;) 1—pa7 " hedie (3.1)

If c= 0 the boundary presentation is called corner-free.

Note thatQ(t)/(1—1)¢ can be viewed as @, degQ)-boundary presentation of. If
degQ < d there is also &d — degQ, 0)-boundary presentation: I€(1—t) = ¥; Git' then

QL) ?eg‘?q.( R g
(1—t)d % —td'

In the sequel the polynomi&l(1—t) will be needed several times, therefore we introduce
the notation

H(t) =

Q(t) :=Q(1-1)
for an arbitraryQ € Z[t].
3_t4
Example 3.2.LetH(t) = 1- 2<t1t3;t> ! . A (1,3)-boundary presentation éf is given
by
1 2 23 t3
H(t) = + + +

1-t 1-t (1-t)2 (1-t)¥
The term “boundary presentation” is motivated by visudiisaof a decomposition of
a Hilbert series: A decomposition

0 _§5a !
— )d - i;j;a” (1—

can be depicted as a square grid with the box at positign labeled byay;.
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3 1 3 |1
2 2 2 | -1
171020 110
0 0o | 1
0 1 2 3 4 0 1 2 3 4

Two boundary presentations @f — 2t 4 3t> —t3) /(1 —1)3.

In case of ar(n, k)-boundary presentation the nonzero labels in this grid fitrenbot-
tom and the right edges of a rectangle wdth n+ 1 rows andk+ 1 columns. The coef-
ficient in the “corner’(d — n,k) plays a dual role since it belongs to both edges, therefore
it is denoted by an extra letter.

Next we deduce a description for the coefficients in a boundegsentation:
Lemma 3.3.Let H(t) = Q(t)/(1—t)9 be a series witfin, k)-boundary presentatiof (3.1).

Moreover let o) 500
t & i t _ * i

fi = g fori=0,....k—1

then

d—n-1

k—1
C= a— Z}b_ _—;aa

gj = b; for j=0,...,d—n—1.

Proof. Multiplication of @) by( —t)"yields
d—n-1

k
_tdn Z}ft-l—ct-i— Z) —tdnl

Hence thef; agree with the firsk coefficients of the power serlﬁ‘;oa;ti, while ay =
c+ z?;g—lg,-. Next we look at[{311) with substituted by -t:

kz;Lf _t>k+d—ilgj(1_t)k
2o
n DA
This time we multiply byt/(1—t)% and get
Q”(t) _Q(l—t) k—1 ftd n den d—n-1 ]
-0k~ (1-pk ~ Qg T 2 et

hencegj = bj for j =0,...,d—n—21landc= by n— Y3 fi. 0
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Since the coefficients in the power series expansion of anaitfunction are unique,
the previous lemma has an immediate consequence:

Corollary 3.4. The coefficients in afn, k)-boundary presentation of f#l) = Q(t) /(1 —t)d
are uniquely determined.

In the rest of the section we will make extensive use of thaticat

tl tH—l tl
_ | 1 3.2
-0l -y Ta—orr (32)
j 1------> a j 0 |a+1
i-1 | B i1 |B+1
i i+1 i i+1

Repeated application of this relation allows to transfomirak)-boundary presenta-
tion of a rational functioH into an(n—1,k) resp.(n,k+ 1)-boundary presentation. We
give a formula for the coefficients of the new boundary presémn in terms of the old
coefficients:

Lemma 3.5. Let
k-1 g ctk d—n-1

H<t):i;(1lt) 1tn Z —th

be an(n,k)-boundary presentation. Then there exists a corner-fre&+ 1)-boundary
presentation; its coefficients¥1, g*1) are given by

fi for i=0,...,k—1

fi(k+1) _

ctrydilg for i=k

j
(k+1) .

g :§g, for j=0,....d—n—-1.
i A r

If n > 0 then there is also a corner-frde — 1, k)-boundary presentation with coefficients
(-1 g("-1) given by
[
"V =3 f, for i=0,... k-1
r=0
- for j=0,...,d—n—-1
g(_n—l) B g] J 9 9
J =

ctyklf for j=d—n.
In particular, an expansion of a corner-free boundary pras¢ion leads to a boundary
presentation with the entries next to the corner being equal
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Corollary 3.6. Let
k-1 gl d—n—1 gjtk

HO=2 a—on " 2, @-vei

be a corner-freén, k)-boundary presentation. If & O then there exist&, k—1)-boundary
presentation; its coefficients’ 1, ck-1 gk=1) are given by

£V _f for i=0,... k-2

c® Y = f 1 gd-n1
k-1 _ J Qo for j=0
9 1 9j—9gj—1 for j=1,....d—n-1

If n < d then there is also gn+ 1,k)-boundary presentation with coefficient§™fb,
C(n+1), g(n+1) given by

f(nH1) fo for i=0

! ) fi—fi.y for i=1,....k—1
™ =gq n1— fcer

ggnﬂ):gj, for j=0,...,d—n—2.

Corollary 3.7. If a rational function H admits an(n,k)-boundary presentation then
there is also an(n’,k’)-boundary presentation for every p&in’,k’) with n' <n, K > k;
for (n',K') # (n,k) this presentation is corner-free. Moreover the coefficeot this
(n',K')-boundary presentation are nonnegative provided that &meesholds for thén, k)-
boundary presentation.

In particular there exists afn, k)-boundary presentation @(t)/(1—t)9 for every
k> degQandn=0,...,d — 1; note that in these cases the formula of Lenhma 3.5 pro-
vides an alternative proof for the equality of the coeffitseiy and the first coefficients of
Q(t)/(1—t)4~". Analogously, ifd > degQ the (d — degQ, 0)-boundary presentation can
be expanded to afn, k)-boundary presentation for=0,...,d — degQ andk > 1, also
confirming the description of thg;.

Corollary 3.8. If an (n,k)-boundary presentation is not corner-free, then it cannet b
obtained by expanding sonie’, k')-boundary presentation with &> n, K <k.

Since any(n,k)-boundary presentation with> degQ can be obtained as an expansion
of the (d, degQ)-boundary presentation @j(t)/(1—1)9, we get a second description of
the coefficients);:

Proposition 3.9. Let
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with k> d. Then the coefficient?a for j=1,...,d —n—1 agrees with thek — 1)-th
coefficient of the power series expansion ¢f)Q(1—t)I 1,
In particular for Q( )/(A—t)k= znzoaﬁk)t” andQ(t)/(1—t)k= S n>0 bFt" we have
) =al™V fork>degQ and j=0,...,d—1.

Proof. Let0< j < d —1. We consider théd — 1 — j, k)-boundary presentation éf with
k > degQ. Since this can be viewed as an expansion of the cornei-dreeg Q) + 1)-
boundary presentation

Q(t> O . tdeg(Q)+l

EEOERN L

we havef, (d =) _ ggk), so by Lemm@@gk) agrees with thék — 1)-th coefficient of

A QW

(1—t)d=(d-1-)) (1—t)i+1

Expanding théd — 1— j, k)-boundary presentation downwards does not aﬁ%@:xthere-
fore this equality is also valid for any, k)-boundary presentation with<d—1— j. The
second part follows immediately from Leminal3.3. O

4. ARITHMETICAL CHARACTERIZATION OF THE HILBERT REGULARITY

In this section we continue our investigation of the Hillbedularity, so we restrict our
attention to nonnegative seri€t)/(1—t)9. As mentioned above, such a series admits
a Hilbert decomposition; it is easy to see that it also admitsoundary presentation
with nonnegative coefficients. In the sequel such a bounpigyentation will be called
nonnegativdor short.

Lemma 4.1. Let H(t) — .Z (‘13'( ))

Then there exists a nonnegatirek)-boundary presentation of H.

be a Hilbert decomposition, and letkmax degQ;.

Proof. Obviously a Hilbert decomposition can be rewritten as

At) < & aj
1) ;; -
It is enough to show that this decomposition can be turnedante of the form
P k tl b tk
% bij KIZ_ with bij >0
=3 (1—t)

foranypwithn< p <d. Repeated appllcatlon of the relation (3.2) yields

|
3 with a;j € N. (4.1)

< bt S (Siobri)t! n (3 _obr)t"
.;)(1—0] Z) (1—t)i+1 (1—-t)
Since the coefficients on the right-hand side are still ngatiee, the claim follows by
reverse induction op < d, starting with the vacuous cage= d. O



HILBERT REGULARITY OF Z-GRADED MODULES 11

Corollary 4.2. (a) Let H(t) = Q(t)/(1—t)9 be a nonnegative series. Then H admits a
nonnegativeg 0, HregH )-boundary presentation as well as a nonnegatiMelepthH . k)-
boundary presentation with suitablexO.

(b) If H admits a non-corner-fre€0, k)-boundary presentation, the#regH > k.

Proof. The statement (a) is clear from the definition of Hiregesp. Hdepth. For (b)
assume on the contrary Hrieg< k, thenH admits a(0,HregH )-boundary presentation,
and this presentation could be expanded tq@hk)-boundary presentation, contradicting
Corollary[3.38. O

Remark 4.3. It is easily seen that, using relatidn (3.2), @mk)-boundary presentation
with n,k > 0 can be transformed into a non-corner-ftae- 1,k — 1)-boundary presenta-
tion. Hence if de@@ > d the rational functiotH admits a non-corner-fre®, degQ — d)-
boundary presentation; together with part (b) of the carglthis yields another proof of
Proposition 2.8.

Corollary[4.2 implies that, for computations of Hilbert tdégrity (and also of Hilbert
depth), we may exclusively consider boundary presentatidhis observation leads to an
estimate for Hrel in the flavour of the equality(M) = HdepthM. In order to formulate
this inequality we need the following notion:

Definition 4.4. For anyQ € Z[t] andk € N, letQ(t)/(1—t)k = znzoaﬁk)t”. Foranyd € N
we set
44(Q) = min{k eN| agk), .. .,agi)l nonnegative}
and QM)
W nonnegative}.

Note thatdy(Q) is finite if and only if the lowest nonvanishing coefficient Qf is
nonnegative, as one sees easily by inductiod.oBy Theorem 4.7 in[11](Q) is finite
if and only if Q viewed as a real-valued function of one variable takes pesialues in
the open interva(0, 1).

Qum(t)

1—t)dimM
the equality HdeptM = p(M) implies 6(Qw) = dimM — HdepthM, so a(ccorc)jing to
Proposition 1.5.15 of 2] and the Auslander-Buchsbaumrir@pd (Qy ) could be named
HprojdimM, the Hilbert projective dimensionNote that HprojdinM only depends on
Qwm but not on dimM.

The announced estimate for the Hilbert regularity readskmis:

5(Q):= min{keN|

For a finitely generated gradétdmoduleM with Hilbert seriesHy (t) =

Proposition 4.5. Let H(t) = Q(t)/(1—t)9 be a nonnegative series, then

~

HregH > &4(Q).

Proof. SinceQ(0) = Q(1) > 0, &(Q) is finite. Let HregH = k, then there exists €, k)-
boundary presentation

k=1 ) d—1 gjtk
Ht)=§ fit'+ct*"+ § —
( ) i; I J; (1_t)dfj
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with nonnegative coefficients. By Lemimal3.3 the fitspefficients ofQ(t)/(1—t)kagree
with the coefficientg); and so they are nonnegative, hedgeQ) < k= HregH. 0J

~

Proposition 4.6. Under the hypothesis of Propositibn 4.5 we even hdregH > 6(Q).

Proof. An (n,k)-boundary presentation ¥(t)/(1—t)% induces ar(n+ m,k)-boundary
presentation oR(t)/(1—1)4t™M, m e N, with the same coefficients. Th@, HregH )-
boundary presentation gf(t) /(1—t)9 has nonnegative coefficients, hence the same holds
for the (m, HregH )-boundary presentation @(t)/(1—t)%+*™, and by Corollary 317 also
the (0, HregH )-boundary presentation @(t)/(1—t)%+™ is nonnegative. This implies
Jd+m(Q) < HregH for all me N, and so3(Q) < HregH, as desired. O

Theorem 4.7. Under the hypothesis of Propositibn #.5 and the additiorsatanption of
either (i) 84(Q) > degQ or (ii) degQ < d we have

HregH = &(Q) = 3(Q).
Proof. In both cases expansion of tiid, degQ) resp. the(d — degQ,0)-boundary pre-
sentation yields &0, §4(Q))-boundary presentation ¢1, which is nonnegative by the
nonnegativity oH and the definition 0®y(Q), and hence

~ ~ ~

&(Q) > HregH > 6(Q) > &(Q). [

The following example shows that, contrary to Hdetk p(M) in case of the Hilbert
depth, the inequality Hrdd > &4(Q) may be strict.
1—-t42t2— 23+ t4
(1-1)?
Q) _ Q)

= 1ot 22 03§t
—t 1-t n;

Example 4.8.ForH(t) = we obtainQ(t) = Q(t) and therefore

implies,(Q) = 1 = HprojdimH. The(0,2)-boundary presentation &f is given by
t2 t2
_ 2
H(t) = 14+ t+t54 -+ A0
Since this is not corner-free, Corolldry 8.8 implies Hiregr 2 > 1 = 3,(Q). In particular
: : d , 1-t+2t2-2t3 44
the Hilbert regularity ofQ(t) /(1 —1t)® depends om: For H'(t) =

(1-t)d
with d > 4 we have Hre#i’ = 1 by Theoreni 4]7.

This example also explains why non-negativity@(t) /(1 —t)k for somek € N does
not ensure Hrel < k: The decomposition

Aty _ & Q)
(1—-t)k i;(l—t)i
with nonnegative; € Z[t] according to Theorem 2.1 in [11] can be turned into one of

Q(t)
(1— t)max{degéi}
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by exchanging and 1—t, butifd < max{deg@i} this does not yield a decomposition of

Q(t)/(1-1)°.

Due to the difficulty illustrated by the previous example tfemeral description of the
Hilbert regularity is less straightforward than that of thigbert depth. In the remaining
case of de@ > d, 5(Q), the (0,degQ)-boundary presentation is nonnegative and hence
HregH < degQ. If HregH < degQ then the(0,degQ)-boundary presentation can be
reduced to a nonnegatiy6, k)-boundary presentation with smaller Such a reduction
could be performed in steps, therefore we investigate veneteduction fronk to k — 1
is possible:

Proposition 4.9. Let

k—1 f|t| d—n-1
H(t) =
®) i;(1—0 it = —td j
with nonnegative coefficients. Then
c =20
HregH <k—1<=<¢ fx.1 > O4_n-1
gj+1 > ¢j forj=0,...,d—n-2
Proof. “=—" Let HregH < k— 1, then there exists a boundary presentation
k—2 f'/ti C/tk—l d—n-1 g tk 1
H(t) = R + T (4.2)
2 - a2, Ao
with nonnegative coefficients. By Lemrnal3.5, this presématan be transformed into
k-2 fi d+ tk 1 od-n-1(5) o)tk
& (L-t) (1—t) S (1—t)d-]

and by uniqueness of the, k)-boundary presentation we have

d—n-1 d—n-1
fka=c+ g; > di = 0d-n-1.
2,92 2,9

The necessity of the other conditions was already noted ol2oy[4.2 (b) and Proposi-
tion[4.5.

<" If the conditions on the right are satisfied then Corolla§y ¥elds a nonnegative
(0,k — 1)-boundary presentatioh (4.2). O

The (0,HregH )-boundary presentation can be achieved by iterated rexfusteps
starting from the(0,degQ)-boundary presentation. The reduction continues as long as
the conditions of the previous proposition remain validneeit stops in one of the three
cases illustrated by the following diagrams
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b
V
bj1
ba—1 bg-1 by-1
L
a - &1 #0 a .-+ -1 0 a -+ -1 0
g O &

The construction of th€0, HregH )-boundary presentation can be described as fol-

lows: Starting withk = degQ we consider th€0,k)-boundary presentation. As long
ask > &(Q) and fy_; = ggi)nfl there is also a nonnegative and corner-ff@e&k — 1)-

boundary presentation, so we continue with 1 instead ok. As soon ak = d4(Q) or
fk1# gék_)n_l we have reached the minimiafor which a nonnegative and corner-free

(0,k)-boundary presentation exists kif= 6d((§) or f_1 < g((jkf)nf1 no further reduction is

possible, hence Hréd = k, but if k > (Sd((j) and fy_1 > ggi)nfl one last reduction step,
leading to a non-corner-free boundary presentation, cgetfermed, so Hrel = k—1
in this case.

Theorem 4.10.Let H(t) = Q(t)./(l—t)d =Y n>0ant" be a nonnegative series wittedo,
and letQ(t)/(1—t)} = 5. obMt" for j € N.

(i) If degQ < d or &4(Q) > degQ, thenHregH = &4(Q).

(i) Otherwise, with
k:=min{i | (@) <i < degQ and g =b{" " forall j =i,...,degQ}
we have

’ _{ k  ifk=&(Q) v aci<by,
regH = ) ~ )
k=1 ifk>&(Q) N ax—1>Dby’;.
Proof. The cases in (i) were already treated in Theokem 4.7. Paffo(iows from the
discussion preceding this theorem; the numkewhich is well-defined by Proposition

[3.9, is just the width of the minimal nonnegative and coifinee-boundary presentation.
([

The closing result of this section is the analogue of Prajprs#.8 ford(Q).

Lemma4.11.Let H(t) = Q(t)/(1—t)% be nonnegative and:e- max{ &(Q), deg(Q) + 1}.
Thend(Q) = %(Q)

Proof. The (d — d(Q), %(Q))-boundary presentation éf is nonnegative by Lemnia 3.3
and the definition 0dy(Q) andd(Q). Hence théd — &(Q), de+m(Q))-boundary presen-
tation withm > 0 is nonnegative as well, but this impliés.n(Q) < d(Q) forallme N,
therefored(Q) = d(Q). O
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5. COMPUTATION OF HILBERT DEPTH AND HILBERT REGULARITY

The aim of this section is an algorithm for computing the Hitbdepth and Hilbert
regularity of a module with given Hilbert seri¢$(t) = Q(t)/(1—t)d9. An algorithm
solely for the Hilbert depth was given by A. Popescu_in [9].

Algorithm 5.1: Computing Hilbert depth and Hilbert regularity
Input: Q € Z[t],d € Zwith H(t) = Q(t)/(1—1)9 nonnegative
1 Q(t) :==Q(1-t);
2 - - Determinedy(Q):
k:=-1;
repeat
k:=k+1,
Compute the firstl coefficientsbl, ..., b}, of Q(t)/(1—t)k;
until bék), e, bék_)l nonnegative
& (Q) =k
3 - - Determine Hprojdinid:
e:=max{d(Q),degQ) +1};
k:=-1;
repeat
k:=k+1;
Compute the firse coefficientsal ..., a, of Q(t)/(1—t)k;
until a(()k),...,ag_,k_)1 nonnegative
HprojdimH =k;

4 HdepttH = d — HprojdimH;

5 - - Determine Hredf:

if degQ < d or &4(Q) > degQ then
| HregH = &(Q);
else
Compute the-th coefficienta; of H for i = O’;' .,degQ;
Compute théd — 1)-th coefficienibé‘]l of (1%(?)] for j = &(Q),...,degQ;
k:=min{i | (Q) <i < degQandaj = b\ " forall j =i,...,degQ};
if a1 > b{Y, and k > &(&) then
| HregH =k—1;
else
| HregH =k;
end
end

Output: HdepthH, HregH
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The correctness of this algorithm follows immediately frime previous results. The
output could be easily extended by the boundary presentatealising Hdepth or Hreg,
since the required coefficients are computed in the cousee¥ample, a nonnegative
boundary presentation of the minimal height Hdebtis given by

((d-h-1 fli+1e
A g L _ x
j; At for e=degQ > &4(Q)

e-1 a
Ht )= § -3~
(t) i; (1_t>h+ d—h-1 b( (Q))
%, a0

with a andb used as in the description of the algorithm, d&ne- HprojdimH.

for e=&4(Q) > degQ

\

For completeness we give an upper bound for the number ofitieps of the loop in
the second step of Algorithm 5.1. The idea is to repla¢g = 3 §it' with a polynomial

Go -+ rt such that for alln,i € N the coefficientc of (Go +rt)/(1—1)X is not greater

than the coefficient of Q(t)/(1—1)k. Such a polynomial can be obtained by repeated
application of the map

m ) m-2
f= %hit' — % hit' + min{hy_1, hm_1 + hp }t™1
2 P

to the polynomial. Since

Go+rt <[5 (n+k-1 n+k—2\1.,
T—0F ~ 2 _qO( n-1 )“( n-2 )}t
~ &

k-2 ;
0D -+ k1) +r<n—1>>] t"

we want to determine the ledssuch that
Go(n+k—=1)+r(n—1)=(Go+r)(n—1) + ko =0 (5.1)
holds for 0< n < d — 1. Without loss of generality we may assume r < 0. Then[(5.1)
is equivalent to
Gok
Go+r
This inequality has to be valid in particular foe=d — 1, and so for
(2—d)(Go+r)
do
the firstd coefficients of(go+rt)/(1—t)X and a fortiori those 0€)(t)/(1—t)k are non-
negative.

n<l1l-—

k>
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25t +t2 4 4t3 "
Example 5.2.Let H(t) = 5(1tt);— . ThenQ(t) = Q(1—t)=2—9t 4 132 — 4t3

~

and we findd;(Q) = 7 since

(t

(1Q_(t))5 =24+t —27— 43+ 0t  + 17+ 56° 1 ..
(t

(1Q—(t))6 =243t +17 -3 -3+ 147+ 700+ ..

(t
<1Q_(t))7 =2+ 5t+6t°+ 33+ 0t + 14>+ 84t°+ . .

In order to determine the Hilbert depth we compute the Br$60) = 7 coefficients of
Q(t)/(1—t)Xfork > 0. Since

t
(1Q_(t>)5 =2+45t4+6t2+4t3+0t* —3t°+ 08+ . ..

t
(1Q_(t>)6 =24 Tt+ 137+ 173+ 17+ 14+ 1404

we have Hdepthl = 7— 6 = 1. The Hilbert regularity requires no further computations

since de@@ = 3 < 7=d, and so Hretd = &;(Q) = 7; moreover in this case the boundary
presentation

24 Tt 4+ 132+ 173 + 1A%+ 1485+ 146
H(t) = T
N 147 N 3t/ N 6t’ N 5t/ N 2t7
21—t (1-1)5 (1-t)®  (1-t)

(1-t)
simultaneously has the minimal height Hdeidtand the minimal width HreH.
Finally we give two examples illustrating the case Hreg 6d(6).

1-t+t3 ~ , a 5 _
1-02" ThenQ(t) = 1— 2t +3t?>—t3and&(Q) = 2. Since

degQ exceeds)y(Q) as well ad, the final loop of our algorithm applies. By

Example 5.3.LetH(t) =

(1Q—(tt))2 =1+t+t24+283+...
J(t

(1Q_(t))2 —14+0t+...

J(t

(1Q_(t)>3:1+t+...

we findk = 2 = 5(Q), hence Hregl = 2.
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2 | 1]/-1/ 0] 1 2 1 2 1

1 — 1 1| — 1 0

0 o | 1] 1] 1] 0 o | 1] 1] 0
o 1 2 3 o 1 2 3 o 1 2 3

H(t)=(1-t+t3)/(1-1)2

This example confirms that Hrég= J4(Q) may also occur if de@ > d, dy(Q).

Example 5.4.ForH(t) = 1_%2:)2243 we haved,(Q) = 1, and the calculations can
be summarized by
2 1/-1] 2|-1 2 1 2 1
1 — 1 3| — 1 2
0 0 11| 3|0 0 11| 0
o 1 2 3 o 1 2 3 o 1 2 3

H(t)= (1-t+22—t3)/(1—-1)2

The third subcase of Hréd) > d4(Q), leading to a non-corner-fré®, HregH )-boundary
presentation, already appeared in Exarhple 4.8.
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