MULTI-REAL-LINEAR ISOMETRIES ON FUNCTION ALGEBRAS

MALIHEH HOSSEINI AND JUAN J. FONT

Abstract. Let A_{1}, \ldots, A_{k} be function algebras (or more generally, dense subspaces of uniformly closed function algebras) on locally compact Hausdorff spaces X_{1}, \ldots, X_{k}, respectively, and let Y be a locally compact Hausdorff space. A k-real-linear map $T: A_{1} \times \ldots \times A_{k} \longrightarrow C_{0}(Y)$ is called a multi-real-linear (or k-real-linear) isometry if

$$
\left\|T\left(f_{1}, \ldots, f_{k}\right)\right\|=\prod_{i=1}^{k}\left\|f_{i}\right\| \quad\left(\left(f_{1}, \ldots, f_{k}\right) \in A_{1} \times \ldots \times A_{k}\right)
$$

where $\|\cdot\|$ denotes the supremum norm. In this paper we study such maps and obtain generalizations of basically all known results concerning multilinear and real-linear isometries on function algebras.

1. Introduction

Let X be a locally compact Hausdorff space and let $C_{0}(X)$ (resp. $C(X)$ if X is compact) denote the Banach space of complex-valued continuous functions defined on X vanishing at infinity, endowed with the supremum norm $\|\cdot\|$. The classical Banach-Stone theorem gave the first characterization of surjective linear isometries between $C(X)$-spaces as weighted composition operators ($[3,1]$). Several extensions of this theorem have been derived for different settings. Thus, Holsztyński ([6]) considered the non-surjective version of the Banach-Stone theorem and showed that if $T: C(X) \longrightarrow C(Y)$ is a linear isometry (not necessarily onto), then T can be represented as a weighted composition operator on a nonempty subset of Y.

In [12], the authors proved, based on the powerful Stone-Weierstrass theorem, the following bilinear version of Holsztyński's theorem:

Let $T: C(X) \times C(Y) \longrightarrow C(Z)$ be a bilinear (or 2-linear) isometry. Then there exist a closed subset Z_{0} of Z, a surjective continuous mapping $\varphi: Z_{0} \longrightarrow X \times Y$ and a unimodular function $a \in C\left(Z_{0}\right)$ such that $T(f, g)(z)=a(z) f\left(\pi_{x}(\varphi(z))\right) g\left(\pi_{y}(\varphi(z))\right)$ for all $z \in Z_{0}$ and every pair $(f, g) \in$ $C(X) \times C(Y)$, where π_{x} and π_{y} are projection maps.

[^0]More recently, in [8], the authors provided a weighed composition characterization of multilinear (k-linear) isometries on function algebras and extended the above results.

Another direction of extensions of the Banach-Stone theorem deals with its real-linear version, motivated by the fact that, thanks to the Mazur-Ulam theorem [9], every surjective isometry between two complex-linear function spaces is real-linear. Thus, in [4], Ellis considered two compact Hausdorff spaces, X_{1} and X_{2}, a uniform algebra M_{1} on X_{1} and a unital closed separating subspace M_{2} of $C\left(X_{2}\right)$ such that the \check{S} ilov boundaries of M_{1} and M_{2} are X_{1} and X_{2}, respectively, and proved that if $T: M_{1} \longrightarrow M_{2}$ is a surjective real-linear isometry, then there exist a clopen subset K of X_{2} and a homeomorphism $\varphi: X_{2} \longrightarrow X_{1}$ such that $T(f)=T(1) f \circ \varphi$ on K and $T(f)=T(1) \overline{f \circ \varphi}$ on $X_{2} \backslash K$, where - denotes the complex conjugate. In [11], Miura generalized this result to nonunital algebras and showed that if $T: A \longrightarrow B$ is a surjective real-linear isometry between two function algebras A and B, then there exist a homeomorphism $\varphi: C h(B) \longrightarrow C h(A)$, a continuous function $\omega: C h(B) \longrightarrow \mathbb{T}$ and a clopen subset K of $C h(B)$ such that $T(f)=\omega f \circ \varphi$ on K and $T(f)=\omega \overline{f \circ \varphi}$ on $C h(B) \backslash K$. More recently, in [10], the authors characterized surjective real-linear isometries between complex function spaces satisfying certain separating conditions and extended some previous results by a technique based on the extreme points. In [7], the non-surjective case is treated based on a different technique.

In this paper we combine both approaches by dealing with k-real-linear isometries. Let A_{1}, \ldots, A_{k} be function algebras (or more generally, dense subspaces of uniformly closed function algebras) on locally compact Hausdorff spaces X_{1}, \ldots, X_{k}, respectively, and let Y be a locally compact Hausdorff space. Here we study a k-real-linear map $T: A_{1} \times \ldots \times A_{k} \longrightarrow C_{0}(Y)$ satisfying

$$
\left\|T\left(f_{1}, \ldots, f_{k}\right)\right\|=\prod_{i=1}^{k}\left\|f_{i}\right\| \quad\left(\left(f_{1}, \ldots, f_{k}\right) \in A_{1} \times \ldots \times A_{k}\right)
$$

which we call a multi-real-linear (or k-real-linear) isometry.
We also check, based on an example, how different these isometries can be from the other so far studied cases.

2. Preliminaries

A function algebra A on a locally compact Hausdorff space X is a subalgebra of $C_{0}(X)$ which separates strongly the points of X in the sense that for each $x, x^{\prime} \in X$ with $x \neq x^{\prime}$, there exists an $f \in A$ with $f(x) \neq f\left(x^{\prime}\right)$ and for each $x \in X$, there exists an $h \in A$ with $h(x) \neq 0$. If X is a compact Hausdorff space, each unital uniformly closed function algebra on X is called a uniform algebra on X.

Let A be a function algebra on a locally compact Hausdorff space X, and let \bar{A} stand for the uniform closure of A. The unique minimal closed subset of X with the property that every function
in A assumes its maximum modulus on this set, which exists by [2], is called the Šilov boundary for A and is denoted by ∂A. The Choquet boundary $C h(A)$ of A is the set of all $x \in X$ for which δ_{x}, the evaluation functional at the point x, is an extreme point of the unit ball of the dual space of $(A,\|\cdot\|)$. So it is apparent that $C h(A)=C h(\bar{A})$, and moreover, by [2, Theorem 1$], C h(A)$ is dense in ∂A. It is said that $x \in X$ is a strong boundary point (or weak peak point) for A if for every neighborhood V of x, there exists a function $f \in A$ such that $\|f\|=1=|f(x)|$ and $|f|<1$ on $X \backslash V$. It is known that for each uniformly closed function algebra A, then $C h(A)$ coincides with the set of all strong boundary points (see [13]). Meantime, a function $f \in A$ is called a peaking function if $\|f\|=1$ and for each $x \in X$, either $|f(x)|<1$ or $f(x)=1$. If we fix $x_{0} \in X$, then $P_{A}\left(x_{0}\right)$ denotes the set of peaking functions f in A with $f\left(x_{0}\right)=1$. Moreover, for an element $x_{0} \in X$, we set $V_{x_{0}}:=\left\{f \in A: f\left(x_{0}\right)=1=\|f\|\right\}$.

In the sequel, for each $f \in C_{0}(X), M_{f}:=\{x \in X:|f(x)|=\|f\|\}$ stands for the maximum modulus set of f.

It should be noted that in the proof of our results we shall apply the following versions of Bishop's Lemma (see [3, Theorem 2.4.1]) adapted to the context of uniformly closed function algebras, which can be obtained with exactly the same proofs as in [5, Lemma 2.3] and [14, Lemma 1].

Lemma 2.1. [5, Lemma 2.3] Let A be a uniformly closed function algebra on a locally compact Hausdorff space $X, f \in A$ and $x_{0} \in C h(A)$. If $f\left(x_{0}\right) \neq 0$, then there exists a peaking function $h \in P_{A}\left(x_{0}\right)$ such that $\frac{f h}{f\left(x_{0}\right)} \in P_{A}\left(x_{0}\right)$.

Lemma 2.2. [14, Lemma 1] Assume that A is a uniformly closed function algebra on a locally compact Hausdorff space X and $f \in A$. Let $x_{0} \in C h(A)$ and arbitrary $r>1$ (or $r \geq 1$ if $f\left(x_{0}\right) \neq 0$), then there exists a function $h \in r\|f\| P_{A}\left(x_{0}\right)=\left\{r\|f\| k: k \in P_{A}\left(x_{0}\right)\right\}$ such that

$$
|f(x)|+|h(x)|<\left|f\left(x_{0}\right)\right|+\left|h\left(x_{0}\right)\right|
$$

for every $x \notin M_{h}$ and $|f(x)|+|h(x)|=\left|f\left(x_{0}\right)\right|+\left|h\left(x_{0}\right)\right|$ for all $x \in M_{h}$. Consequently, $\||f|+|h|\|=$ $\left|f\left(x_{0}\right)\right|+\left|h\left(x_{0}\right)\right|$.

Let us remark that Lemma 2.1 is a version of the multiplicative Bishop's Lemma and Lemma 2.2 is the strong version of the additive Bishop's Lemma.

3. Previous Lemmas

Let A_{1}, \ldots, A_{k} be function algebras (or more generally, dense subspaces of uniformly closed function algebras) on locally compact Hausdorff spaces X_{1}, \ldots, X_{k}, respectively. In this section we shall prove some previous lemmas used in our main theorem (Theorem 4.1). First note that it is not difficult to extend a k-real-linear isometry $T: A_{1} \times \ldots \times A_{k} \longrightarrow C_{0}(Y)$ to a k-real-linear isometry
$T: \overline{A_{1}} \times \ldots \times \overline{A_{k}} \longrightarrow C_{0}(Y)$, where $\overline{A_{i}}$ is the uniform closure of $A_{i}(i=1, \ldots, k)$. So, without loss of generality, we can assume each $A_{i}(i=1, \ldots, k)$ is a uniformly closed function algebra.

Lemma 3.1. Let $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$ and $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{T}^{k}$. The set

$$
\mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}:=\left\{y \in Y: y \in M_{T\left(f_{1}, \ldots, f_{k}\right)} \text { for all }\left(f_{1}, \ldots, f_{k}\right) \in \alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}\right\}
$$

is nonempty.

Proof. The proof is a modification of the proof of [7, Lemma 4.1]. Since for each $\left(f_{1}, \ldots, f_{k}\right) \in$ $\alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}$, the maximum modulus set of $T\left(f_{1}, \ldots, f_{k}\right), M_{T\left(f_{1}, \ldots, f_{k}\right)}$, is a compact subset of the one point compactification Y_{∞} of Y, it is enough to check that the family $\left\{M_{T\left(f_{1}, \ldots, f_{k}\right)}:\left(f_{1}, \ldots, f_{k}\right) \in\right.$ $\left.\alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}\right\}$ has the finite intersection property. For this purpose, let $\left(f_{1}^{1}, \ldots, f_{k}^{1}\right), \ldots,\left(f_{1}^{n}, \ldots, f_{k}^{n}\right)$ be members in $\alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}$. Define

$$
f_{i}:=\frac{1}{n} \sum_{j=1}^{n} f_{i}^{j}, \quad i \in\{1, \ldots, k\} .
$$

Clearly, $\left(f_{1}, \ldots, f_{k}\right) \in \alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}$. Hence $\left\|T\left(f_{1}, \ldots, f_{k}\right)\right\|=\left\|f_{1}\right\| \ldots\left\|f_{k}\right\|=1$. Then there is a point $y_{0} \in Y$ such that

$$
1=\left|T\left(f_{1}, \ldots, f_{k}\right)\left(y_{0}\right)\right|=\frac{1}{n^{k}}\left|\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} T\left(f_{1}^{i_{1}}, \ldots, f_{k}^{i_{k}}\right)\left(y_{0}\right)\right| .
$$

Since for each $1 \leq i_{1}, \ldots, i_{k} \leq n, f_{1}^{i_{1}} \in \alpha_{1} V_{x_{1}}, \ldots, f_{k}^{i_{k}} \in \alpha_{k} V_{x_{k}}$ and $\left\|T\left(f_{1}^{i_{1}}, \ldots, f_{k}^{i_{k}}\right)\right\|=1$, we conclude that $\left|T\left(f_{1}^{i_{1}}, \ldots, f_{k}^{i_{k}}\right)\left(y_{0}\right)\right|=1$. In particular, $y_{0} \in \bigcap_{i=1}^{n} M_{T\left(f_{1}^{i}, \ldots, f_{k}^{i}\right)}$. Therefore $\bigcap_{i=1}^{n} M_{T\left(f_{1}^{i}, \ldots, f_{k}^{i}\right)} \neq \emptyset$, as was to be proved.

Lemma 3.2. Let $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right),\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{T}^{k}$ and $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$. Let also I and J be two disjoint sets with $I \neq \emptyset$ and $I \cup J=\{1, \ldots, k\}$. If we assume that for each $j \in J$, $h_{j} \in \alpha_{j} V_{x_{j}}$ and for each $i \in I, f_{i} \in A_{i}$ with $f_{i}\left(x_{i}\right)=0$, then $T\left(F_{1}, \ldots, F_{k}\right)(y)=0$, where $F_{t}=f_{t}$ if $t \in I$ and $F_{t}=h_{t}$ if $t \in J$.

Proof. Let us suppose, contrary to what we claim, that there exists $y_{0} \in \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$ such that $T\left(F_{1}, \ldots, F_{k}\right)\left(y_{0}\right) \neq 0$. Without loss of generality, we may assume that $T\left(F_{1}, \ldots, F_{k}\right)\left(y_{0}\right)=e^{i \theta}$, where $-\pi<\theta \leq \pi$. Fix a constant $r>1$. For each $i \in I$, we can choose, by Lemma 2.2, a peaking function $h_{i}^{\prime} \in V_{x_{i}}$ such that $\left\|\left|f_{i}\right|+r_{i}\left|h_{i}^{\prime}\right|\right\|=r_{i}$, where $r_{i}=r\left\|f_{i}\right\|$. In particular, putting $h_{i}=\alpha_{i} h_{i}^{\prime}$ for each $i \in I$, we have $\left\| \pm f_{i}+r_{i} h_{i}\right\|=r_{i}$ and $T\left(h_{1}, \ldots, h_{k}\right)\left(y_{0}\right)=e^{i \theta^{\prime}} \in \mathbb{T}$ for some $-\pi<\theta^{\prime} \leq \pi$.

We first assume that $\operatorname{card}(I)=1$. For simplicity, we can take $I=\{1\}$. We have

$$
\begin{aligned}
r & =\left\| \pm f_{1}+r_{1} h_{1}\right\|\left\|h_{2}\right\| \ldots\left\|h_{k}\right\|=\left\|T\left(\pm f_{1}+r_{1} h_{1}, h_{2}, \ldots, h_{k}\right)\right\| \\
& \geq\left|T\left(\pm f_{1}+r_{1} h_{1}, h_{2}, \ldots, h_{k}\right)\left(y_{0}\right)\right|=\left| \pm T\left(f_{1}, h_{2}, \ldots, h_{k}\right)\left(y_{0}\right)+r_{1} T\left(h_{1}, h_{2}, \ldots, h_{k}\right)\left(y_{0}\right)\right| \\
& =\left| \pm e^{i \theta}+r_{1} e^{i \theta^{\prime}}\right|=\left| \pm e^{i\left(\theta-\theta^{\prime}\right)}+r_{1}\right|
\end{aligned}
$$

and consequently, $r_{1} \geq \max \left\{\left|e^{i\left(\theta-\theta^{\prime}\right)}+r_{1}\right|,\left|-e^{i\left(\theta-\theta^{\prime}\right)}+r_{1}\right|\right\}>r_{1}$, which gives a contradiction. Thereby, $T\left(F_{1}, \ldots, F_{k}\right)(y)=0$ for all $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$.

Now suppose that $I=\{1,2\}$. Hence, from the previous part, we can conclude that

$$
\begin{aligned}
r_{1} r_{2} & =\left\| \pm f_{1}+r_{1} h_{1}\right\|\left\|f_{2}+r_{2} h_{2}\right\|\left\|h_{3}\right\| \ldots\left\|h_{k}\right\| \\
& =\left\|T\left(\pm f_{1}+r_{1} h_{1}, f_{2}+r_{2} h_{2}, h_{3}, \ldots, h_{k}\right)\right\| \\
& \geq \mid \pm T\left(f_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)\left(y_{0}\right)+r_{2} T\left(f_{1}, h_{2}, h_{3}, \ldots, h_{k}\right)\left(y_{0}\right) \\
& +r_{1} T\left(h_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)\left(y_{0}\right)+r_{1} r_{2} T\left(h_{1}, h_{2}, h_{3}, \ldots, h_{k}\right)\left(y_{0}\right) \mid \\
& =\left| \pm e^{i \theta}+r_{1} r_{2} e^{i \theta^{\prime}}\right|=\left| \pm e^{i\left(\theta-\theta^{\prime}\right)}+r_{1} r_{2}\right|,
\end{aligned}
$$

and so $r_{1} r_{2} \geq \max \left\{\left|e^{i\left(\theta-\theta^{\prime}\right)}+r_{1} r_{2}\right|,\left|-e^{i\left(\theta-\theta^{\prime}\right)}+r_{1} r_{2}\right|\right\}>r_{1} r_{2}$, a contradiction which implies that the result is true when $I=\{1,2\}$. Similarly, this result holds for all the other cases where $\operatorname{card}(I)=2$.

Now we can continue by induction: noting to the above explanation, let us assume that the result is true for $\operatorname{card}(I)=l-1$ and $3 \leq l \leq k$. We shall show that the result is held if $\operatorname{card}(I)=l$. To this end, we suppose that $\operatorname{card}(I)=l$ and $I=\left\{x_{1}, \ldots, x_{l}\right\}$, without loss of generality. If $l<k$, then we get

$$
\begin{aligned}
r_{1} r_{2} \ldots r_{l} & =\left\| \pm f_{1}+r_{1} h_{1}\right\|\left\|f_{2}+r_{2} h_{2}\right\| \ldots\left\|f_{l}+r_{l} h_{l}\right\|\left\|h_{l+1}\right\| \ldots\left\|h_{k}\right\| \\
& =\left\|T\left(\pm f_{1}+r_{1} h_{1}, f_{2}+r_{2} h_{2}, \ldots, f_{l}+r_{l} h_{l}, h_{l+1}, \ldots, h_{k}\right)\right\| \\
& \geq\left|T\left(\pm f_{1}+r_{1} h_{1}, f_{2}+r_{2} h_{2}, \ldots, f_{l}+r_{l} h_{l}, h_{l+1}, \ldots, h_{k}\right)\left(z_{0}\right)\right| \\
& =\left| \pm T\left(f_{1}, \ldots, f_{l}, h_{l+1}, \ldots, h_{k}\right)\left(y_{0}\right)+r_{1} r_{2} \ldots r_{l} T\left(h_{1}, \ldots, h_{k}\right)\left(y_{0}\right)\right| \\
& =\left| \pm e^{i\left(\theta-\theta^{\prime}\right)}+r_{1} \ldots r_{l}\right|
\end{aligned}
$$

which is impossible as before. Therefore, $T\left(f_{1}, \ldots, f_{l}, h_{l+1}, \ldots, h_{k}\right)(y)=0$ for all $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$. Now if $l=k$, then $I=\left\{x_{1}, \ldots, x_{k}\right\}$ and similarly,

$$
\begin{aligned}
r_{1} r_{2} \ldots r_{k} & =\left\| \pm f_{1}+r_{1} h_{1}\right\|\left\|f_{2}+r_{2} h_{2}\right\| \ldots\left\|f_{k}+r_{k} h_{k}\right\| \\
& \geq\left|T\left(\pm f_{1}+r_{1} h_{1}, f_{2}+r_{2} h_{2}, \ldots, f_{k}+r_{k} h_{k}\right)\left(y_{0}\right)\right| \\
& =\left| \pm T\left(f_{1}, \ldots, f_{k}\right)\left(y_{0}\right)+r_{1} r_{2} \ldots r_{k} T\left(h_{1}, \ldots, h_{k}\right)\left(y_{0}\right)\right| \\
& =\left| \pm e^{i\left(\theta-\theta^{\prime}\right)}+r_{1} r_{2} \ldots r_{k}\right|
\end{aligned}
$$

which again leads to a contradiction showing that $T\left(f_{1}, \ldots, f_{k}\right)(y)=0$ for all $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$.
Lemma 3.3. Let $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right),\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{T}^{k}$, and $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$. Then there exists a unique $\lambda \in \mathbb{T}$ such that $T\left(\alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}\right) \subseteq \lambda V_{y}$.

Proof. Let $\left(f_{1}, \ldots, f_{k}\right),\left(g_{1}, \ldots, g_{k}\right) \in V_{x_{1}} \times \ldots \times V_{x_{k}}$. Then $\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right),\left(\alpha_{1} g_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right) \in$ $\alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}$ and so $\left|T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)(y)\right|=1=\left|T\left(\alpha_{1} g_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)\right|$. It is also clear that

$$
\frac{\left|T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)(y)+T\left(\alpha_{1} g_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)\right|}{2}=1
$$

because $\frac{\alpha_{1} f_{1}+\alpha_{1} g_{1}}{2} \in \alpha_{1} V_{x_{1}}$. Hence,

$$
\frac{T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)(y)+T\left(\alpha_{1} g_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)}{2}=e^{i \theta}
$$

for some $-\pi<\theta \leq \pi$. Then since $e^{i \theta}$ is an extreme point of the unit ball of \mathbb{C}, it follows that $T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)(y)=T\left(\alpha_{1} g_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)$. Continuing this process we get

$$
\begin{aligned}
T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)(y) & =T\left(\alpha_{1} g_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y) \\
& =T\left(\alpha_{1} g_{1}, \alpha_{2} g_{2}, \alpha_{3} f_{3}, \ldots, \alpha_{k} f_{k}\right)(y) \\
& =\ldots=T\left(\alpha_{1} g_{1}, \ldots, \alpha_{k} g_{k}\right)(y)
\end{aligned}
$$

Therefore, $T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)(y)=T\left(\alpha_{1} g_{1}, \ldots, \alpha_{k} g_{k}\right)(y)$. Now, if we define $\lambda:=T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)(y)$ for some $\left(f_{1}, \ldots, f_{k}\right) \in \alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}$, then we conclude that $T\left(\alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}\right) \subseteq \lambda V_{y}$.

Lemma 3.4. Let $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ be distinct elements in $C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$, and $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{T}^{k}$. Then $\mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}} \cap \mathcal{I}_{x_{1}^{\prime}, \ldots, x_{k}^{\prime}}^{\alpha_{1}, \ldots, \alpha_{k}}=\emptyset$.

Proof. Contrary to what we claim, assume that there exists $y_{0} \in \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}} \cap \mathcal{I}_{x_{1}^{\prime}, \ldots, x_{k}^{\prime}}^{\alpha_{1}, \ldots, \alpha_{k}}$. Since $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ are distinct, the set $L=\left\{i: 1 \leq i \leq k, x_{i} \neq x_{i}^{\prime}\right\}$ is nonempty. For each $i \in L$, we can choose a function $g_{i} \in A_{i}$ such that $g_{i}\left(x_{i}\right)=1$ and $g_{i}\left(x_{i}^{\prime}\right)=0$, and then, by Lemma 2.1, a peaking function $h_{i} \in P_{A_{i}}\left(x_{i}\right)$ such that $g_{i} h_{i} \in P_{A_{i}}\left(x_{i}\right)$. Now if we let $f_{i}=g_{i} h_{i}$ for every $i \in L$, then $f_{i} \in V_{x_{i}}$ with $f_{i}\left(x_{i}\right)=1$ and $f_{i}\left(x_{i}^{\prime}\right)=0$. Moreover, for each $j \in\{1, \ldots, k\} \backslash L$, we
can also choose a peaking function $f_{j} \in V_{x_{j}}$. On one side, since $\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right) \in \alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}$, $\left|T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)\left(y_{0}\right)\right|=1$. On the other side, by Lemma 3.2, $T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)\left(y_{0}\right)=0$, which is impossible. Therefore, $\mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}} \cap \mathcal{I}_{x_{1}^{\prime}, \ldots, x_{k}^{\prime}}^{\alpha_{1}, \ldots, \alpha_{k}}=\emptyset$.

Definition 3.5. For each $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$, let $\mathcal{I}_{x_{1}, \ldots, x_{k}}:=\bigcap_{\alpha_{1}, \ldots, \alpha_{k} \in\{1, i\}} \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$.
We should note that k-real-linear isometries behave differently from k-complex-linear isometries with respect to these sets. More precisely, as seen in [8] and in all previous papers dealing with 1-complex-linear (not necessarily surjective) isometries starting with Holsztyński's seminal paper ([6]), it is clear that $\mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}=\mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}^{\prime}, \ldots, \alpha_{k}^{\prime}}$ for each k-complex-linear isometry T, given any $\alpha_{i}, \alpha_{i}^{\prime} \in \mathbb{T}$ $(1 \leq i \leq k)$. However, as the next example shows, this equality is no longer valid for k-real-linear isometries:

Example 3.6. Let $T: C\left(\left\{x_{1}\right\}\right) \times C\left(\left\{x_{2}\right\}\right) \rightarrow C\left(\left\{y_{1}, y_{2}\right\}\right)$ defined by $T(a+i b, c+i d)\left(y_{1}\right):=a c$ and $T(a+i b, c+i d)\left(y_{2}\right):=(a+i b)(c+i d)$. It is apparent that T is a 2-real-linear isometry for which $\mathcal{I}_{x_{1}, x_{2}}^{1,1}=\left\{y_{1}, y_{2}\right\}$ and $\mathcal{I}_{x_{1}, x_{2}}^{1, i}=\left\{y_{2}\right\}$.

In the complex-linear case, thanks to the above paragraph and Lemma 3.1, we infer that $\mathcal{I}_{x_{1}, \ldots, x_{k}} \neq$ \emptyset for each $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$. However, the authors are unaware whether each set $\mathcal{I}_{x_{1}, \ldots, x_{k}}$ is nonempty for $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$ in the real-linear case. Hence we continue under the assumption that for each $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right), \mathcal{I}_{x_{1}, \ldots, x_{k}} \neq \emptyset$. At the final remark of this paper, we provide several conditions which yield the nonemptiness of such sets.

Lemma 3.7. If $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}, \alpha_{2}, \ldots, \alpha_{k} \in\{1, i\}$ and $\left(f_{1}, \ldots, f_{k}\right) \in V_{x_{1}} \times \ldots \times V_{x_{k}}$, then we have either

$$
T\left(i f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)=i T\left(f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)
$$

or

$$
T\left(i f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)=-i T\left(f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)
$$

A similar claim holds for the other indexes.

Proof. Let $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}$, and put $\lambda_{i}:=T\left(i f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)$ and $\lambda_{1}:=T\left(f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)$ for simplicity. We have

$$
\begin{aligned}
\left|\lambda_{1} \pm \lambda_{i}\right| & =\left|T\left(f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y) \pm T\left(i f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)\right|=\left|T\left(f_{1} \pm i f_{1}, f_{2}, \ldots, f_{k}\right)(y)\right| \\
& \leq\left\|T\left(f_{1} \pm i f_{1},, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)\right\|=\left\|f_{1} \pm i f_{1}\right\|\left\|f_{2}\right\| \ldots\left\|f_{k}\right\| \\
& =\left\|f_{1}\right\||1 \pm i|=\sqrt{2}
\end{aligned}
$$

Hence $\left|\lambda_{1} \pm \lambda_{i}\right| \leq \sqrt{2}$, and since $\left|\lambda_{1}\right|=\left|\lambda_{i}\right|=1$, it follows easily that $\lambda_{i}^{2}=-\lambda_{1}^{2}$. Consequently, either $T\left(i f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)=i T\left(f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)$ or $T\left(i f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)=$ $-i T\left(f_{1}, \alpha_{2} f_{2}, \ldots, \alpha_{k} f_{k}\right)(y)$. Analogously, a similar claim can be proved for the other indexes.

Lemma 3.8. Given $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$, we have $\mathcal{I}_{x_{1}, \ldots, x_{k}}=\bigcap_{\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{T}} \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$. Proof. Clearly, $\mathcal{I}_{x_{1}, \ldots, x_{k}} \supseteq \bigcap_{\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{T}} \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$. To see the converse inclusion, let $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}, \beta_{j} \in$ $\{1, i\}$ and put $\alpha_{j}=a_{j}+i b_{j} \in \mathbb{T}$, where $a_{j}, b_{j} \in \mathbb{R}$ and $j \in\{1, \ldots, k\}$. Given $\left(f_{1}, \ldots, f_{k}\right) \in V_{x_{1}} \times \ldots \times V_{x_{k}}$, from the previous lemma it follows that

$$
\begin{aligned}
T\left(\alpha_{1} f_{1}, \beta_{2} f_{2}, \ldots, \beta_{k} f_{k}\right)(y) & =a_{1} T\left(f_{1}, \beta_{2} f_{2}, \ldots, \beta_{k} f_{k}\right)(y)+b_{1} T\left(i f_{1}, \beta_{2} f_{2}, \ldots, \beta_{k} f_{k}\right)(y) \\
& =\left(a_{1} \pm i b_{1}\right) T\left(f_{1}, \beta_{2} f_{2}, \ldots, \beta_{k} f_{k}\right)(y)
\end{aligned}
$$

and so $\left|T\left(\alpha_{1} f_{1}, \beta_{2} f_{2}, \ldots, \beta_{k} f_{k}\right)(y)\right|=1$. Consequently,

$$
y \in \bigcap\left\{\mathcal{I}_{x_{1}, x_{2}, \ldots, x_{k}}^{\alpha_{1}, \beta_{2}, \ldots, \beta_{k}}: \alpha_{1} \in \mathbb{T}, \beta_{2}, \ldots, \beta_{k} \in\{1, i\}\right\}
$$

Now from the above argument and a discussion similar to the proof of the previous lemma we conclude that

$$
\begin{aligned}
T\left(\alpha_{1} f_{1}, \alpha_{2} f_{2}, \beta_{3} f_{3}, \ldots, \beta_{k} f_{k}\right)(y) & =a_{2} T\left(\alpha_{1} f_{1}, f_{2}, \beta_{3} f_{3}, \ldots, \beta_{k} f_{k}\right)(y)+b_{2} T\left(\alpha_{1} f_{1}, i f_{2}, \beta_{3} f_{3}, \ldots, \beta_{k} f_{k}\right)(y) \\
& =\left(a_{2} \pm i b_{2}\right) T\left(\alpha_{1} f_{1}, f_{2}, \beta_{3} f_{3}, \ldots, \beta_{k} f_{k}\right)(y)
\end{aligned}
$$

which implies that $y \in \bigcap\left\{\mathcal{I}_{x_{1}, x_{2}, x_{3}, \ldots, x_{k}}^{\alpha_{1}, \alpha_{2}, \beta_{3}, \ldots, \beta_{k}}: \alpha_{1}, \alpha_{2} \in \mathbb{T}, \beta_{3}, \ldots, \beta_{k} \in\{1, i\}\right\}$. Continuing this process, finally we deduce that $y \in \bigcap_{\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{T}} \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$, as claimed.

Definition 3.9. Let us define the set $Y_{0}:=\left\{y \in Y: y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}\right.$ for some $x_{i} \in \operatorname{Ch}\left(A_{i}\right), i=$ $1, \ldots, k\}$.
Y_{0} is a non-empty set by our assumption after Example 3.6 and we can define a map $\varphi: Y_{0} \longrightarrow$ $C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$ by

$$
\varphi(y):=\left(x_{1}, \ldots, x_{k}\right)
$$

if $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}$ for some $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$. From Lemma 3.4, for any distinct members $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ in $C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$ it follows that $\mathcal{I}_{x_{1}, \ldots, x_{k}} \cap \mathcal{I}_{x_{1}^{\prime}, \ldots, x_{k}^{\prime}}=\emptyset$ and φ is well-defined. It is clear that φ is surjective by our assumption after Example 3.6.

As observed in Lemma 3.8, we have $\mathcal{I}_{x_{1}, \ldots, x_{k}}=\bigcap_{\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{T}} \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$. Now let us define a map $\Lambda: Y_{0} \times \mathbb{T}^{k} \longrightarrow \mathbb{T}$ by

$$
\Lambda\left(y,\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right):=\lambda
$$

such that $T\left(\alpha_{1} V_{x_{1}} \times \ldots \times \alpha_{k} V_{x_{k}}\right) \subseteq \lambda V_{y}$, where $\varphi(y)=\left(x_{1}, \ldots, x_{k}\right)$. By Lemma 3.3, it is apparent that Λ is a well-defined map.

Definition 3.10. According to Lemma 3.7, $\Lambda(y,(i, 1, \ldots, 1))= \pm i \Lambda(y,(1,1, \ldots, 1))$ for all $y \in Y_{0}$. Set $K_{1}:=\left\{y \in Y_{0}: \Lambda(y,(i, 1, \ldots, 1))=i \Lambda(y,(1,1, \ldots, 1))\right\}$ and, consequently, $Y_{0} \backslash K_{1}=\left\{y \in Y_{0}:\right.$ $\Lambda(y,(i, 1, \ldots, 1))=-i \Lambda(y,(1,1, \ldots, 1))\}$. Analogously, for each $j \in\{2, \ldots, k\}$, we can define a subset K_{j} of Y_{0}.

We remark that it is not difficult to see each $K_{j}, j \in\{1, \ldots, k\}$, is a clopen subset of Y_{0}.

Lemma 3.11. Let $y \in Y_{0}, \varphi(y)=\left(x_{1}, \ldots, x_{k}\right), h_{j} \in V_{x_{j}}(1 \leq j \leq k)$, and let also I be a non-empty subset of $\{1, \ldots, k\}$. Assume that for each $t \in I, f_{t}=i h_{t}$ and for each $t \notin I, f_{t}=h_{t}$. Then

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=i_{1} \ldots i_{k} T\left(h_{1}, \ldots, h_{k}\right)(y)
$$

where

$$
i_{t}=\left\{\begin{array}{cl}
i & y \in K_{t} \\
-i & y \in Y_{0} \backslash K_{t}
\end{array}\right.
$$

when $t \in I$ and $i_{t}=1$ when $t \notin I$.

Proof. Put $n=\operatorname{card}(I)$. For $n=1$, the result follows from Lemma 3.7.
Step 1. Suppose that $n=2$. We may assume, without loss of generality, that $I=\{1,2\}$. Lemma 3.7 shows that $T\left(f_{1}, \ldots, f_{k}\right)(y)= \pm i T\left(h_{1}, f_{2}, \ldots, f_{k}\right)(y)$. Then $T\left(f_{1}, \ldots, f_{k}\right)(y)=\mp T\left(h_{1}, h_{2}, f_{3}, \ldots, f_{k}\right)(y)$. We claim that

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=\left\{\begin{array}{cl}
-T\left(h_{1}, \ldots, h_{k}\right)(y) & y \in\left(K_{1} \cap K_{2}\right) \cup\left(K_{1}^{c} \cap K_{2}^{c}\right) \\
T\left(h_{1}, \ldots, h_{k}\right)(y) & y \in\left(K_{1} \cup K_{2}\right) \backslash\left(K_{1} \cap K_{2}\right)
\end{array}\right.
$$

Suppose, on the contrary, that $y \in K_{1} \cap K_{2}$ and $T\left(f_{1}, \ldots, f_{k}\right)(y)=T\left(h_{1}, \ldots, h_{k}\right)(y)$. Then taking into account the k-real-linearity of T we have

$$
\begin{aligned}
T\left(i h_{1},(i+1) h_{2}, h_{3}, \ldots, h_{k}\right)(y) & =T\left(i h_{1}, i h_{2}, h_{3} \ldots, h_{k}\right)(y)+T\left(i h_{1}, h_{2}, h_{3} \ldots, h_{k}\right)(y) \\
& =T\left(h_{1}, \ldots, h_{k}\right)(y)+i T\left(h_{1}, \ldots, h_{k}\right)(y) \\
& =(1+i) T\left(h_{1}, \ldots, h_{k}\right)(y) \\
& =T\left(h_{1},(i+1) h_{2}, h_{3}, \ldots, h_{k}\right)(y)
\end{aligned}
$$

which implies that $T\left((i-1) h_{1},(i+1) h_{2}, h_{3}, \ldots, h_{k}\right)(y)=0$ and it is a contradiction since it is not difficult to see that on $\mathcal{I}_{x_{1}, \ldots, x_{k}},\left|T\left((i-1) h_{1},(i+1) h_{2}, h_{3}, \ldots, h_{k}\right)(y)\right|=|(i-1)(i+1)|=2$, by Lemma 3.8. Hence this argument shows that $T\left(f_{1}, \ldots, f_{k}\right)(y)=-T\left(h_{1}, \ldots, h_{k}\right)(y)$ for each $y \in K_{1} \cap K_{2}$. The other cases can be derived similarly and so the result holds for all the cases where $\operatorname{card}(I)=2$.

Step 2. Next, assume that the result is true for $\operatorname{card}(I)=l-1$ and $3 \leq l<k$, and we prove the result for the case where $\operatorname{card}(I)=l$. We suppose, with no loss of generality, that $I=\{1, \ldots, l\}$. Again
from Lemma 3.7, we conclude that $T\left(i h_{1}, \ldots, i h_{l}, h_{l+1}, \ldots, h_{k}\right)(y)= \pm i T\left(i h_{1}, \ldots, i h_{l-1}, h_{l}, \ldots, h_{k}\right)(y)$. Then we have $T\left(i h_{1}, \ldots, i h_{l}, h_{l+1}, \ldots, h_{k}\right)(y)= \pm i i_{1} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y)$. We claim that

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=\left\{\begin{array}{cl}
i i_{1} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y) & y \in K_{l} \\
-i i_{1} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y) & y \in Y_{0} \backslash K_{l}
\end{array}\right.
$$

Suppose, on the contrary, that $y \in Y_{0} \backslash K_{l}$ and $T\left(i h_{1}, \ldots, i h_{l}, h_{l+1}, \ldots, h_{k}\right)(y)=i i_{1} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y)$. Then, we deduce that

$$
\begin{aligned}
T\left(i h_{1}, \ldots, i h_{l-1},(i+1) h_{l}, h_{l+1}, \ldots, h_{k}\right)(y) & =T\left(i h_{1}, \ldots, i h_{l-1}, i h_{l}, h_{l+1}, \ldots, h_{k}\right)(y) \\
& +T\left(i h_{1}, \ldots, i h_{l-1}, h_{l}, h_{l+1}, \ldots, h_{k}\right)(y) \\
& =i i_{1} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y)+i_{1} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y) \\
& =i_{1} \ldots i_{l-1}(i+1) T\left(h_{1}, \ldots, h_{k}\right)(y)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
T\left(h_{1}, i h_{2}, \ldots, i h_{l-1},(i+1) h_{l}, h_{l+1}, \ldots, h_{k}\right)(y) & =T\left(h_{1}, i h_{2}, \ldots, i h_{l}, h_{l+1}, \ldots, h_{k}\right)(y) \\
& +T\left(h_{1}, i h_{2}, \ldots, i h_{l-1}, h_{l}, h_{l+1}, \ldots, h_{k}\right)(y) \\
& =-i i_{2} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y)+i_{2} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y) \\
& =i_{2} \ldots i_{l-1}(-i+1) T\left(h_{1}, \ldots, h_{k}\right)(y)
\end{aligned}
$$

Therefore, adding the above two expressions,

$$
T\left((i+1) h_{1}, i h_{2}, \ldots, i h_{l-1},(i+1) h_{l}, h_{l+1}, \ldots, h_{k}\right)(y)=i_{2} \ldots i_{l-1}\left(i_{1} i+i_{1}-i+1\right) T\left(h_{1}, \ldots, h_{k}\right)(y)
$$

and so

$$
T\left((i+1) h_{1}, i h_{2}, \ldots, i h_{l-1},(i+1) h_{l}, h_{l+1}, \ldots, h_{k}\right)(y)=\left\{\begin{array}{cl}
0 & y \in K_{1} \\
(2-2 i) T\left(h_{1}, \ldots, h_{k}\right)(y) & y \in Y_{0} \backslash K_{1}
\end{array}\right.
$$

which is impossible because $\left|T\left((i+1) h_{1}, i h_{2}, \ldots, i h_{l-1},(i+1) h_{l}, h_{l+1}, \ldots, h_{k}\right)(y)\right|=2$, by Lemma 3.8. Thus from this argument we conclude that $T\left(i h_{1}, \ldots, i h_{l}, h_{l+1}, \ldots, h_{k}\right)(y)=i i_{1} \ldots i_{l-1} T\left(h_{1}, \ldots, h_{k}\right)(y)$ for each $y \in Y_{0} \backslash K_{l}$. The other cases can be obtained in a similar way. So the result holds for all cases where $n=l$.

Step 3. Finally suppose that the result is true when $\operatorname{card}(I)=k-1$. We shall show the validity of the result for the case where $\operatorname{card}(I)=k$. By Lemma 3.7, we can see that $T\left(i h_{1}, \ldots, i h_{k}\right)(y)=$ $\pm i T\left(i h_{1}, \ldots, i h_{k-1}, h_{k}\right)(y)$, and so $T\left(i h_{1}, \ldots, i h_{k}\right)(y)= \pm i i_{1} \ldots i_{k-1} T\left(h_{1}, \ldots, h_{k}\right)(y)$. We claim that

$$
T\left(i h_{1}, \ldots, i h_{k}\right)(y)=\left\{\begin{array}{cl}
i i_{1} \ldots i_{k-1} T\left(h_{1}, \ldots, h_{k}\right)(y) & y \in K_{k} \\
-i i_{1} \ldots i_{k-1} T\left(h_{1}, \ldots, h_{k}\right)(y) & y \in Y_{0} \backslash K_{k} \\
10
\end{array}\right.
$$

Suppose, on the contrary, that $y \in K_{k}$ and $T\left(i h_{1}, \ldots, i h_{k}\right)(y)=-i i_{1} \ldots i_{k-1} T\left(h_{1}, \ldots, h_{k}\right)(y)$. Then

$$
\begin{aligned}
T\left(i h_{1}, i h_{2}, \ldots, i h_{k-1},(i+1) h_{k}\right)(y) & =-i i_{1} \ldots i_{k-1} T\left(h_{1}, \ldots, h_{k}\right)(y)+T\left(i h_{1},, \ldots, i h_{k-1}, h_{k}\right)(y) \\
& =\left(-i i_{1} \ldots i_{k-1}+i_{1} \ldots i_{k-1}\right) T\left(h_{1}, \ldots, h_{k}\right)(y)
\end{aligned}
$$

and

$$
\begin{aligned}
T\left(h_{1}, i h_{2}, \ldots, i h_{k-1},(i+1) h_{k}\right)(y) & =i_{2} \ldots i_{k} T\left(h_{1}, \ldots, h_{k}\right)(y)+i_{2} \ldots i_{k-1} T\left(h_{1}, \ldots, h_{k}\right)(y) \\
& =\left(i_{2} \ldots i_{k}+i_{2} \ldots i_{k-1}\right) T\left(h_{1}, \ldots, h_{k}\right)(y)
\end{aligned}
$$

thus adding the above two relations we have

$$
T\left((i+1) h_{1}, i h_{2}, \ldots, i h_{k-1},(i+1) h_{k}\right)(y)=i_{2} \ldots i_{k-1}\left(-i i_{1}+i_{1}+i+1\right) T\left(h_{1}, \ldots, h_{k}\right)(y)
$$

and consequently,

$$
T\left((i+1) h_{1}, i h_{2}, \ldots, i h_{k-1},(i+1) h_{k}\right)(y)=\left\{\begin{array}{cl}
i_{2} \ldots i_{k-1}(2+2 i) T\left(h_{1}, \ldots, h_{k}\right)(y) & y \in K_{1} \\
0 & y \in Y_{0} \backslash K_{1}
\end{array}\right.
$$

which is impossible since $\left|T\left((i+1) h_{1}, i h_{2}, \ldots, i h_{k-1},(i+1) h_{k}\right)(y)\right|=\left|(i+1)^{2}\right|=2$, by Lemma 3.8. Therefore, $T\left(i h_{1}, \ldots, i h_{k}\right)(y)=i i_{1} \ldots i_{k-1} T\left(h_{1}, \ldots, h_{k}\right)(y)$ for all $y \in K_{k}$, as asserted. Similarly, for every $y \in Y_{0} \backslash K_{k}$ we have $T\left(i h_{1}, \ldots, i h_{k}\right)(y)=-i i_{1} \ldots i_{k-1} T\left(h_{1}, \ldots, h_{k}\right)(y)$.

Lemma 3.12. Let $y \in Y_{0}$ and $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{C}^{k}$. Then

$$
\Lambda\left(y,\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right)=\alpha_{1}^{*} \ldots \alpha_{k}^{*} \Lambda(y,(1, \ldots, 1))
$$

where, for each $j \in\{1, \ldots, k\}, \alpha_{j}^{*}=\alpha_{j}$ if $y \in K_{j}$ and $\alpha_{j}^{*}=\overline{\alpha_{j}}$ if $y \in Y_{0} \backslash K_{j}$.
Proof. For each $j \in\{1, \ldots, k\}$, choose $f_{j} \in V_{x_{j}}$. Let $\alpha_{j}=a_{j}+i b_{j}$, where $a_{j}, b_{j} \in \mathbb{R}$. Since T is k-real-linear, if $y \in \cap_{j=1}^{k} K_{j}$, then, from the preceeding lemma, it follows that

$$
\begin{aligned}
T\left(a_{1} f_{1}+i b_{1} f_{1}, \ldots, a_{k} f_{k}+i b_{k} f_{k}\right)(y) & =\sum_{c_{i_{j}} \in\left\{a_{j}, i b_{j}\right\},(1 \leq j \leq k)} c_{i_{1} \ldots c_{i_{k}}} T\left(f_{1}, \ldots, f_{k}\right)(y) \\
& =\alpha_{1} \ldots \alpha_{k} T\left(f_{1}, \ldots, f_{k}\right)(y) \\
& =\alpha_{1} \ldots \alpha_{k} \Lambda(y,(1, \ldots, 1))
\end{aligned}
$$

and if $y \in \cap_{j=1}^{k}\left(Y_{0} \backslash K_{j}\right)$, similarly we have

$$
\begin{aligned}
T\left(a_{1} f_{1}+i b_{1} f_{1}, \ldots, a_{k} f_{k}+i b_{k} f_{k}\right)(y) & =\sum_{c_{i_{j}} \in\left\{a_{j},-i b_{j}\right\},(1 \leq j \leq k)} c_{i_{1}} \ldots c_{i_{k}} T\left(f_{1}, \ldots, f_{k}\right)(y) \\
& =\overline{\alpha_{1}} \ldots \overline{\alpha_{k}} T\left(f_{1}, \ldots, f_{k}\right)(y) \\
& =\overline{\alpha_{1}} \ldots \overline{\alpha_{k}} \Lambda(y,(1, \ldots, 1))
\end{aligned}
$$

The other cases can be obtained similarly.

Remark 3.13. We define the map $\omega: Y_{0} \longrightarrow \mathbb{T}$ by

$$
\omega(y):=\Lambda(y,(1, \ldots, 1))
$$

for all $y \in Y_{0}$. Indeed, if $\left(x_{1}, \ldots, x_{k}\right)=\varphi(y)$, then $\omega(y)=T\left(f_{1}, \ldots, f_{k}\right)$, where $\left(f_{1}, \ldots, f_{k}\right) \in V_{x_{1}} \times \ldots \times$ $V_{x_{k}}$. Moreover, by the above lemma, for all $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{C}^{k}$ we have

$$
\Lambda\left(y,\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right)=\alpha_{1}^{*} \ldots \alpha_{k}^{*} \omega(y)
$$

where, for each $j \in\{1, \ldots, k\}, \alpha_{j}^{*}=\alpha_{j}$ if $y \in K_{j}$ and $\alpha_{j}^{*}=\overline{\alpha_{j}}$ if $y \in Y_{0} \backslash K_{j}$.
Lemma 3.14. Let $y \in Y_{0}$ with $\varphi(y)=\left(x_{1}, \ldots, x_{k}\right)$, and $\left(f_{1}, \ldots, f_{k}\right) \in A_{1} \times V_{x_{2}} \times \ldots \times V_{x_{k}}$. Then

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=\omega(y) \begin{cases}f_{1}\left(x_{1}\right) & y \in K_{1} \\ \overline{f_{1}\left(x_{1}\right)} & y \in Y_{0} \backslash K_{1}\end{cases}
$$

A similar assertion holds for the other indexes.
Proof. If $f_{1}\left(x_{1}\right)=0$, then from Lemma 3.2, $T\left(f_{1}, \ldots, f_{k}\right)(y)=0$. Now assume that $f_{1}\left(x_{1}\right) \neq 0$. Hence choosing h_{1} as a function in $V_{x_{1}}$, again by Lemma 3.2, we have $T\left(f_{1}-f_{1}\left(x_{1}\right) h_{1}, f_{2}, \ldots, f_{k}\right)(y)=0$, and so

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=T\left(f_{1}\left(x_{1}\right) h_{1}, f_{2}, \ldots, f_{k}\right)(y)
$$

Now, from the previous lemma, we infer that

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)= \begin{cases}f_{1}\left(x_{1}\right) T\left(h_{1}, f_{2}, \ldots, f_{k}\right)(y) & y \in K_{1} \\ \overline{f_{1}\left(x_{1}\right) T\left(h_{1}, f_{2}, \ldots, f_{k}\right)(y)} & y \in Y_{0} \backslash K_{1}\end{cases}
$$

as claimed. Similarly, the other cases can be concluded.

4. Main result

Let A_{1}, \ldots, A_{k} be function algebras (or more generally, dense subspaces of uniformly closed function algebras) on locally compact Hausdorff spaces X_{1}, \ldots, X_{k}, respectively. Let also recall here our assumption after Example 3.6 that for each $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right), \mathcal{I}_{x_{1}, \ldots, x_{k}} \neq \emptyset$.

Theorem 4.1. Suppose that $T: A_{1} \times \ldots \times A_{k} \longrightarrow C_{0}(Y)$ is a k-real-linear isometry. Then there exist a nonempty subset Y_{0} of Y, a continuous surjective map $\varphi: Y_{0} \longrightarrow C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$, (possibly empty) clopen subsets K_{1}, \ldots, K_{k} of Y_{0} and a unimodular continuous function $\omega: Y_{0} \longrightarrow \mathbb{T}$ such that for all $\left(f_{1}, \ldots, f_{k}\right) \in A_{1} \times \ldots \times A_{k}$ and $y \in Y_{0}$,

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=\omega(y) \prod_{j=1}^{k} f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}
$$

where π_{j} is the j th projection map and for each $j \in\{1, \ldots, k\}, f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}=f_{j}\left(\pi_{j}(\varphi(y))\right)$ if $y \in K_{j}$ and $f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}=\overline{f_{j}\left(\pi_{j}(\varphi(y))\right)}$ if $y \in Y_{0} \backslash K_{j}$.

Proof. Let Y_{0} be the set introduced in Definition 3.9. Fix $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$ and $h_{j} \in V_{x_{j}}$ for each $j, j=1, \ldots, k$. Then for each $j, j=1, \ldots, k$, we can define a real-linear isometry as follows:

$$
\left\{\begin{array}{c}
T_{j}: A_{j} \longrightarrow C_{0}(Y) \\
T_{j}(f):=T\left(h_{1}, \ldots, h_{j-1}, f, h_{j+1}, \ldots, h_{k}\right)
\end{array}\right.
$$

According to [7], there exist a nonempty subset Y_{j} of Y, a subset \mathcal{K}_{j} of Y_{j}, a continuous surjective $\operatorname{map} \varphi_{j}: Y_{j} \longrightarrow C h\left(A_{j}\right)$ such that, for each $f_{j} \in A_{j}$,

$$
T_{j}\left(f_{j}\right)(y)=T\left(h_{1}, \ldots, h_{k}\right)(y) \begin{cases}f_{j}\left(\varphi_{j}(y)\right) & y \in \mathcal{K}_{j} \\ \frac{f_{j}\left(\varphi_{j}(y)\right)}{} & y \in Y_{j} \backslash \mathcal{K}_{j}\end{cases}
$$

Namely, $Y_{j} \supseteq \bigcup_{x_{j}^{\prime} \in C h\left(A_{j}\right)} \mathcal{I}_{x_{1}, \ldots, x_{j}^{\prime}, \ldots, x_{k}}$ and if $y \in \mathcal{I}_{x_{1}, \ldots, x_{j}^{\prime}, \ldots, x_{k}}$, then $\varphi_{j}(y)=x_{j}^{\prime}$.
Let $\left(f_{1}, \ldots, f_{k}\right) \in A_{1} \times \ldots \times A_{k}$ and $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}$. From the description of T_{j}, it easily follows that $y \in \mathcal{K}_{j}$ if $y \in K_{j}$, and $y \notin \mathcal{K}_{j}$ if $y \notin K_{j}$, where K_{j} is the clopen subset of Y_{0} introduced in Definition 3.10. We now claim that

$$
T\left(f_{1}\left(x_{1}\right) h_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)=f_{1}\left(x_{1}\right)^{*} T_{2}\left(f_{2}\right)(y)
$$

where $f_{1}\left(x_{1}\right)^{*}=f_{1}\left(x_{1}\right)$ if $y \in K_{1}$, and $f_{1}\left(x_{1}\right)^{*}=\overline{f_{1}\left(x_{1}\right)}$ if $y \in Y_{0} \backslash K_{1}$. First note that the k-real-linearity of T yields

$$
T\left(f_{1}\left(x_{1}\right) h_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)=\operatorname{Re} f_{1}\left(x_{1}\right) T\left(h_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)+\operatorname{Im} f_{1}\left(x_{1}\right) T\left(i h_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)
$$

On the other hand, by Lemma 3.2, $T\left(i h_{1}, f_{2}-f_{2}\left(x_{2}\right) h_{2}, h_{3}, \ldots, h_{k}\right)(y)=0$ and so, using the preceding remark, we deduce that

$$
\begin{aligned}
T\left(i h_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y) & =T\left(i h_{1}, f_{2}\left(x_{2}\right) h_{2}, h_{3}, \ldots, h_{k}\right)(y) \\
& =\operatorname{Re} f_{2}\left(x_{2}\right) T\left(i h_{1}, h_{2}, \ldots, h_{k}\right)(y)+\operatorname{Im} f_{2}\left(x_{2}\right) T\left(i h_{1}, i h_{2}, h_{3}, \ldots, h_{k}\right)(y)
\end{aligned}
$$

$$
=\omega(y)\left\{\begin{aligned}
i \operatorname{Re} f_{2}\left(x_{2}\right)-\operatorname{Im} f_{2}\left(x_{2}\right)=i T_{2}\left(f_{2}\right)(y) & y \in K_{1} \cap K_{2} \\
i \operatorname{Re} f_{2}\left(x_{2}\right)+\operatorname{Im} f_{2}\left(x_{2}\right)=i T_{2}\left(f_{2}\right)(y) & y \in K_{1} \backslash K_{2} \\
-i \operatorname{Re} f_{2}\left(x_{2}\right)+\operatorname{Im} f_{2}\left(x_{2}\right)=-i T_{2}\left(f_{2}\right)(y) & y \in K_{2} \backslash K_{1} \\
-i \operatorname{Re} f_{2}\left(x_{2}\right)-\operatorname{Im} f_{2}\left(x_{2}\right)=-i T_{2}\left(f_{2}\right)(y) & y \in Y_{0} \backslash\left(K_{1} \cup K_{2}\right)
\end{aligned}\right.
$$

Now combining the latter relations implies that
$T\left(f_{1}\left(x_{1}\right) h_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)= \begin{cases}T_{2}\left(f_{2}\right)(y)\left(\operatorname{Re} f_{1}\left(x_{1}\right)+i \operatorname{Im} f_{1}\left(x_{1}\right)\right)=T_{2}\left(f_{2}\right)(y) f_{1}\left(x_{1}\right) & y \in K_{1}, \\ T_{2}\left(f_{2}\right)(y)\left(\operatorname{Re} f_{1}\left(x_{1}\right)-i \operatorname{Im} f_{1}\left(x_{1}\right)\right)=T_{2}\left(f_{2}\right)(y) \overline{f_{1}\left(x_{1}\right)} \quad y \in Y_{0} \backslash K_{1},\end{cases}$ as claimed.

Similarly, $T\left(f_{1}, f_{2}\left(x_{2}\right) h_{2}, h_{3}, \ldots, h_{k}\right)(y)=f_{2}\left(x_{2}\right)^{*} T_{1}\left(f_{1}\right)(y)$, where $f_{2}\left(x_{2}\right)^{*}=f_{2}\left(x_{2}\right)$ if $y \in K_{2}$, and $f_{2}\left(x_{2}\right)^{*}=\overline{f_{2}\left(x_{2}\right)}$ if $y \in Y_{0} \backslash K_{2}$. Now using again Lemmas 3.2 and 3.14 , Remark 3.13 and the above two equations it follows that

$$
\begin{aligned}
0 & =T\left(f_{1}-f_{1}\left(x_{1}\right) h_{1}, f_{2}-f_{2}\left(x_{2}\right) h_{2}, h_{3}, \ldots, h_{k}\right)(y) \\
& =T\left(f_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)-T\left(f_{1}\left(x_{1}\right) h_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y) \\
& -T\left(f_{1}, f_{2}\left(x_{2}\right) h_{2}, h_{3}, \ldots, h_{k}\right)(y)+f_{1}\left(x_{1}\right)^{*} f_{2}\left(x_{2}\right)^{*} T\left(h_{1}, \ldots, h_{k}\right)(y) \\
& =T\left(f_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)-f_{1}\left(x_{1}\right)^{*} T_{2}\left(f_{2}\right)(y)-f_{2}\left(x_{2}\right)^{*} T_{1}\left(f_{1}\right)(y)+f_{1}\left(x_{1}\right)^{*} f_{2}\left(x_{2}\right)^{*} T\left(h_{1}, \ldots, h_{k}\right)(y) \\
& =T\left(f_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)-f_{1}\left(x_{1}\right)^{*} T\left(h_{1}, \ldots, h_{k}\right)(y) f_{2}\left(x_{2}\right)^{*} \\
& -f_{2}\left(x_{2}\right)^{*} T\left(h_{1}, \ldots, h_{k}\right)(y) f_{1}\left(x_{1}\right)^{*}+f_{1}\left(x_{1}\right)^{*} f_{2}\left(x_{2}\right)^{*} T\left(h_{1}, \ldots, h_{k}\right)(y) \\
& =T\left(f_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)-f_{1}\left(x_{1}\right)^{*} f_{2}\left(x_{2}\right)^{*} T\left(h_{1}, \ldots, h_{k}\right)(y)
\end{aligned}
$$

where, as above, $f_{j}\left(x_{j}\right)^{*}=f_{j}\left(x_{j}\right)$ if $y \in K_{j}$, and $f_{j}\left(x_{j}\right)^{*}=\overline{f_{j}\left(x_{j}\right)}$ if $y \in Y_{0} \backslash K_{j}$.
Thus $T\left(f_{1}, f_{2}, h_{3}, \ldots, h_{k}\right)(y)=T\left(h_{1}, \ldots, h_{k}\right)(y) f_{1}\left(x_{1}\right)^{*} f_{2}\left(x_{2}\right)^{*}$. By continuing this process and applying Lemma 3.2, we finally see that

$$
\begin{aligned}
0 & =T\left(f_{1}-f_{1}\left(x_{1}\right) h_{1}, \ldots, f_{k}-f_{k}\left(x_{k}\right) h_{k}\right)(y) \\
& =T\left(f_{1}, \ldots, f_{k}\right)(y)-T\left(h_{1}, \ldots, h_{k}\right)(y) f_{1}\left(x_{1}\right)^{*} \ldots f_{k}\left(x_{k}\right)^{*}
\end{aligned}
$$

thereby, $T\left(f_{1}, \ldots, f_{k}\right)(y)=T\left(h_{1}, \ldots, h_{k}\right)(y) f_{1}\left(x_{1}\right)^{*} \ldots f_{k}\left(x_{k}\right)^{*}$, where $f_{j}\left(x_{j}\right)^{*}=f_{j}\left(x_{j}\right)$ if $y \in K_{j}$, and $f_{j}\left(x_{j}\right)^{*}=\overline{f_{j}\left(x_{j}\right)}$ if $y \in Y_{0} \backslash K_{j}$.

Consider φ as introduced after Definition 3.9. Now let us recall the unimodular function ω : $Y_{0} \longrightarrow \mathbb{T}$ defined in Remark 3.13 ; that is, if $y \in Y_{0}$ then $\omega(y):=T\left(h_{1}, \ldots, h_{k}\right)(y)$, where $h_{j} \in$ $P_{A_{j}}\left(\pi_{j}(\varphi(y))\right)$. Besides, from the above argument, it follows that if $y \in Y_{0}$ with $\varphi(y)=\left(x_{1}, \ldots, x_{k}\right)$ and $\left(f_{1}, \ldots, f_{k}\right) \in A_{1} \times \ldots \times A_{k}$, then

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=\omega(y) \prod_{j=1}^{k} f_{j}\left(x_{j}\right)^{*}=\omega(y) \prod_{j=1}^{k} f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}
$$

that is,

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=\omega(y) \prod_{j=1}^{k} f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}
$$

where $f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}=f_{j}\left(\pi_{j}(\varphi(y))\right)$ if $y \in K_{j}$ and $f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}=\overline{f_{j}\left(\pi_{j}(\varphi(y))\right)}$ if $y \in Y_{0} \backslash K_{j}$.
Next we prove that φ is continuous. Suppose that $y_{0} \in Y_{0}, \varphi\left(y_{0}\right)=\left(x_{1}, \ldots, x_{k}\right)$ and $U_{1} \times \ldots \times U_{k}$ is a neighborhood of $\left(x_{1}, \ldots, x_{k}\right)$ in $C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$. For each $j, j=1, \ldots, k$, there is a neighborhood U_{j}^{\prime} of x_{j} in X_{j} with $U_{j}=U_{j}^{\prime} \cap C h\left(A_{j}\right)$. Choose a peaking function $f_{j} \in V_{x_{j}}$ such that
$\left|f_{j}\right|<\frac{1}{2}$ on $X_{j} \backslash U_{j}^{\prime}(j=1, \ldots, k)$. Then $\left|T\left(f_{1}, \ldots, f_{k}\right)\left(y_{0}\right)\right|=1$. Set

$$
V:=\left\{z \in Y_{0}:\left|T\left(f_{1}, \ldots, f_{k}\right)(z)\right|>\frac{1}{2}\right\}
$$

Clearly, V is a neighborhood of y_{0} such that $\varphi(V) \subseteq U_{1} \times \ldots \times U_{k}$ because if $z \in V$ and $\varphi(z)=$ $\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$, then

$$
\frac{1}{2}<\left|T\left(f_{1}, \ldots, f_{k}\right)(z)\right|=\prod_{j=1}^{k}\left|f_{j}\left(x_{j}^{\prime}\right)\right| \leq\left|f_{j}\left(x_{j}^{\prime}\right)\right| \quad(j=1, \ldots, k)
$$

Hence $x_{j}^{\prime} \in U_{j}$ and so $\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right) \in U_{1} \times \ldots \times U_{k}$. Therefore, φ is continuous.
To complete the proof, it suffices to check the continuity of ω. Let $y_{0} \in Y_{0}$. Then $y_{0} \in \mathcal{I}_{x_{1}, \ldots, x_{k}}$ for a unique $\left(x_{1}, \ldots, x_{k}\right)$ in $C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$. For each $j, j=1, \ldots, k$, choose a peaking function $f_{j} \in P_{A_{j}}\left(x_{j}\right)$ and take

$$
U_{j}:=\left\{x \in C h\left(A_{j}\right): f_{j}(x) \neq 0\right\}
$$

Then $U=U_{1} \times \ldots \times U_{k}$ is a neighborhood of $\left(x_{1}, \ldots, x_{k}\right)$ in $C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$ and consequently $\varphi^{-1}(U)$ is a neighborhood of y_{0}. We have

$$
\omega(y)=\frac{T\left(f_{1}, \ldots, f_{k}\right)(y)}{\prod_{j=1}^{k} f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}} \quad\left(y \in \varphi^{-1}(U)\right)
$$

where $f_{j}\left(\pi_{j}(\varphi(y))\right)^{*}=f_{j}\left(\pi_{j}(\varphi(y))\right)$ if $y \in K_{j}$ and $f_{i}\left(\pi_{i}(\varphi(y))\right)^{*}=f_{j}\left(\pi_{j}(\varphi(y))\right)$ if $y \in Y_{0} \backslash K_{j}$. So taking into account that K_{j} is a clopen subset of Y_{0}, from the continuity of the functions $T\left(f_{1}, \ldots, f_{k}\right)$, $f_{j} \circ \pi_{j} \circ \varphi$ and $\overline{f_{j} \circ \pi_{j} \circ \varphi}$ we conclude that ω is continuous at y_{0}.

It should be noted that if T is a k-linear-isometry, then, as mentioned before Example 3.6, we have $\mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}=\mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}^{\prime}, \ldots, \alpha_{k}^{\prime}}$ for all $\left(\alpha_{1}, \ldots, \alpha_{k}\right),\left(\alpha_{1}^{\prime}, \ldots, \alpha_{k}^{\prime}\right) \in \mathbb{T}^{k}$ and $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$, and furthermore, $K_{j}=Y_{0}$ for all $j \in\{1, \ldots, k\}$. So we can obtain immediately the main result in [8] as follows:

Corollary 4.2. Suppose that $T: A_{1} \times \ldots \times A_{k} \longrightarrow C_{0}(Y)$ is a k-linear isometry. Then there exist a nonempty subset Y_{0} of Y, a continuous surjective $\operatorname{map} \varphi: Y_{0} \longrightarrow C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$, and a unimodular continuous function $\omega: Y_{0} \longrightarrow \mathbb{T}$ such that

$$
T\left(f_{1}, \ldots, f_{k}\right)(y)=\omega(y) \prod_{j=1}^{k} f_{j}\left(\pi_{j}(\varphi(y))\right)
$$

for all $\left(f_{1}, \ldots, f_{k}\right) \in A_{1} \times \ldots \times A_{k}$ and $y \in Y_{0}$, where π_{j} is the j th projection map.

Remark 4.3. As announced after Example 3.6, we provide several conditions each of which implies the nonemptiness of the sets $\mathcal{I}_{x_{1}, \ldots, x_{k}}$:

- Given $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$, there exists $\left(f_{1}, \ldots, f_{k}\right) \in V_{x_{1}} \times \ldots \times V_{x_{k}}$ such that $\bigcap_{\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in\{1, i\}^{k}} M_{T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)} \neq \emptyset$.

Let us give an explanation to see $\mathcal{I}_{x_{1}, \ldots, x_{k}} \neq \emptyset$ in this case. Consider y in the above non-empty intersection. Given $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in\{1, i\}^{k}$ and $\left(g_{1}, \ldots, g_{k}\right) \in V_{x_{1}} \times \ldots \times V_{x_{k}}$, then from Lemma 3.2 we have $T\left(\alpha_{1} f_{1}-\alpha_{1} g_{1}, f_{2}, \ldots, f_{k}\right)(y)=0$, and so $\left|T\left(\alpha_{1} g_{1}, f_{2}, \ldots, f_{k}\right)(y)\right|=$ $\left|T\left(\alpha_{1} f_{1}, f_{2}, \ldots, f_{k}\right)(y)\right|=1$. This argument yields $y \in \mathcal{I}_{x_{1}, x_{2}, \ldots, x_{k}}^{\alpha_{1}, 1, \ldots, 1}$. Then again by using Lemma 3.2 (twice) we get

$$
\begin{aligned}
\left|T\left(\alpha_{1} g_{1}, \alpha_{2} g_{2}, f_{3}, \ldots, f_{k}\right)(y)\right| & =\left|T\left(\alpha_{1} g_{1}, \alpha_{2} f_{2}, f_{3}, \ldots, f_{k}\right)(y)\right| \\
& =\left|T\left(\alpha_{1} f_{1}, \alpha_{2} f_{2}, f_{3}, \ldots, f_{k}\right)(y)\right|=1
\end{aligned}
$$

and consequently, $y \in \mathcal{I}_{x_{1}, x_{2}, x_{3}, \ldots, x_{k}}^{\alpha_{1}, \alpha_{2}, 1, \ldots, 1}$. By continuing this process, finally it is concluded that $y \in \mathcal{I}_{x_{1}, \ldots, x_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}$. Therefore, $\mathcal{I}_{x_{1}, \ldots, x_{k}} \neq \emptyset$.

- Given $\left(x_{1}, \ldots, x_{k}\right) \in C h\left(A_{1}\right) \times \ldots \times C h\left(A_{k}\right)$, there exists $\left(f_{1}, \ldots, f_{k}\right) \in V_{x_{1}} \times \ldots \times V_{x_{k}}$ such that all the functions $\left|T\left(\alpha_{1} f_{1}, \ldots, \alpha_{k} f_{k}\right)\right|,\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in\{1, i\}^{k}$, peak at the same points.
- In the unital case, $\bigcap_{\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in\{1, i\}^{k}} M_{T\left(\alpha_{1}, \ldots, \alpha_{k}\right)} \neq \emptyset$.
- In the surjective case when $k=1$ (see [7, Corollary 3.11]).

References

[1] J. Araujo and J.J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349 (1997) 413-428.
[2] J. Araujo and J.J. Font, On S̆ ilov boundaries for subspaces of continuous functions, Topology Appl. 77 (1997) 79-85.
[3] A. Browder, Introduction to Function Algebras, W. A. Benjamin, New York-Amsterdam, 1969.
[4] A.J. Ellis, Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc. 22 (1990) 381-385.
[5] O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties, Proc. Amer. Math. Soc. 134 (2006) 2923-2930.
[6] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions, Studia Math. 26 (1966) 133-136.
[7] M. Hosseini and J.J. Font, Real-linear isometries and jointly norm-additive maps on function algebras, Mediterr. J. Math. (2015), DOI 10.1007/s00009-015-0607-2
[8] M. Hosseini, J.J. Font and M. Sanchis, Multilinear isometries on function algebras, Linear Multilinear Algebra, 63 (2015), no. 7, 1448-1457.
[9] S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Math. Acad. Sci. Paris 194 (1932) 946-948.
[10] H. Koshimizu, T. Miura, H. Takagi and S.E. Takahasi, Real-linear isometries between subspaces of continuous functions, J. Math. Anal. Appl. 413 (2014) 229-241.
[11] T. Miura, Real-linear isometries between function algebras, Cent. Eur. J. Math. 9 (2011) 778-788.
[12] A. Moreno and A. Rodríguez, A bilinear version of Holsztyński's theorem on isometries of $C(X)$-spaces, Studia Math. 166 (2005) 83-91.
[13] N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function algebras II, Proc. Edinb. Math. Soc. 48 (2005) 219-229.
[14] T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl. 357 (2009) 45-53.

Department of Mathematics, K.N. Toosi University of Technology, Tehran, 16315-1618, Iran
E-mail address: m.hosseini@kntu.ac.ir

Departamento de Matemáticas, Universitat Jaume I, Campus Riu Sec, 8029 AP, Castellón, Spain
E-mail address: font@mat.uji.es

[^0]: Key words and phrases: function algebra, k-real-linear isometry, Choquet boundary, Bishop's Lemma, peaking function, uniform algebra.

 2010 Mathematics Subject Classification. Primary 46J10, 47B38; Secondary 47B33.
 Research of J.J. Font was partially supported by Universitat Jaume I (Projecte P11B2014-35).
 This work was partially supported by a grant from the Simons Foundation.

