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Abstract 

In addition to the known effect of substrate on interfacial properties of perovskite films, 

here we show that bulk properties of Hybrid Lead Halide Perovskite films depend on 

the type of substrate used for film growth. Despite the relative large film thickness, 

~600 nm, the roughness and nature of the substrate layer (glass, FTO, TiO2 and 

PEDOT:PSS) affect not just the degree of preferential orientation and crystal grain size 
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but also the lattice parameters of CH3NH3PbI3 films synthesized from PbCl2 precursor. 

The obtained changes in lattice parameters indicate that Pb-Pb distance varies around 

0.7%. We suggest that substrate roughness and chemical nature determine the 

concentration of defects mainly by varying chlorine content and probably by the 

incorporation of oxygen and iodine vacancies during film nucleation and growth. These 

differences have also consequences in the observed light induced transformations. Upon 

laser illumination, the formation of additional defects, most probably related to oxygen, 

is revealed by 110 and 165 cm-1 Raman peaks. For increasing laser power the chemical 

transformation into PbOx is clearly identified by the 140 and 275 cm-1 Raman peaks. 

The irreversible photoluminescence enhancement observed at low power with 

illumination time, also dependent on the substrate nature, is proposed to be due to the 

localization of the electron-hole excitons created in the vicinity of the light generated 

defects. The results shed light into the performance of the perovskite layer and help 

understanding how bulk processes, where ion migration is a conspicuous example, are 

severely affected by interfacial properties as those imposed by the substrate. 
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1. Introduction 

The structure and physical properties of hybrid perovskite organometallic halides 

CH3NH3MX3 (M = Pb or Sn, X = Cl, Br or I) were first reported by Weber in 1978.1,2 

The first attempt to use CH3NH3MX3 (X=Br and I) as semiconductor sensitizer in dye-

sensitized liquid junction-type solar cells was in 2009, leading to a power conversion 

efficiency (PCE) of 3–4%. 3  But research in photovoltaic devices based on these 

materials was triggered in 2012 by the reported 10-11%  PCE of a solid-state perovskite 

solar cell based on CH3NH3PbI3 
4,5 (in short MAPbI3) with a 500 h confirmed stability. 

Few materials have generated so much research production in recent years, allowing 

solar cells based on them to reach a top PCE up to 22.1% (KRICT, South Korea).6 Also, 

MAPbI3crystallizes easily from solution phase, enabling cost-effective processing such 

as spin-coating and printing. This development has been boosted by the band gap 

tailoring ability through chemical substitution, superior charge-transfer properties and, 

specially, advances in controlling the morphology and composition of these materials. 

7,8,9,10,11,12,13 

However, despite its outstanding performance, there is still much about their working 

principles that remains poorly understood as their photophysical properties and their 

relationship with structure and morphology. One clear example is the influence of 

contacts which affect charge separation and interfacial properties of perovskite devices 

but there are many results that point to a deeper influence. For example, the hysteresis 

observed in operation conditions is tightly related to ion migration, which is a bulk 

property, and is also strongly dependent on the choice of contacts. Different 

explanations have been provided in order to understand hysteresis observed for 

Perovskite Solar Cells (PSCs).14 The most accepted hypothesis attributes part of this 

hysteresis to bulk ion migration along the perovskite layer15,16,17 although this hysteresis 
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is also strongly affected by the kind of substrate employed.18 In this work we have 

investigated to what extent the substrate is influencing not just interfacial properties but 

also bulk properties of perovskite films by the use of different oxide and non-oxide 

substrates. 

In the case of iodine perovskites, used for photovoltaic devices, it is worth to highlight 

the role of Pb precursors in the properties of the MAPbI3 layer.19 Specifically, in this 

work, MAPbI3 layers have been prepared using PbCl2 precursor (in short MAPbI3:Cl) 

with a reported Cl content lower than 0.2 % wt.20 ,21  MAPbI3:Cl has demonstrated 

improved properties over MAPbI3.While the bandgap is nearly identical to that of 

MAPbI3, in MAPbI3:Cl the carrier diffusion length is one order of magnitude larger 

than that of the MAPbI3 (exceeding 1 µm) and exhibits improved charge carrier 

properties due to higher crystallinity.7,22,23,24 It has been shown that the perovskite film is 

intrinsically heterogeneous in crystal size, and that Cl plays an important role in 

improving the crystallization process.20 However, the influence of the underneath layer 

on the stability, lattice parameters, orientation and the structure-properties relationship 

needs further understanding.  

Halide perovskites exhibit a complex structural behavior with not clearly stated room 

temperature (RT) structure, having been proposed several tetragonal space groups: 

I4cm, I4/mcm, and I4/m. 25 , 26 , 27  Lattice dynamics calculations reveal a significant 

coupling between low-frequency vibrational modes associated with the inorganic 

(PbX3
−)n framework and those of the organic CH3NH3

+ cation, which emphasizes the 

interplay between molecular orientation and the corner-sharing octahedral framework in 

the structural transformations. 28 , 29  These particularities together with the high 

sensitivity to ambient conditions and the instability under laser irradiation lead to a 

difficulty in the determination of the Raman modes, which are, in general, very useful 
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tools to track structural, compositional or electronic changes in solids. The low 

frequency part of the Raman spectrum is still unclear and there is a great diversity in the 

phonon identification, as well as in the reported evolution of the Raman peaks in 

different atmospheres and upon illumination. 30 , 31 , 32  Also large variability of the 

photoluminescence (PL) wavelength for MAPbI3 films has been reported remarking that 

mechanisms leading to these changes are not well understood yet.33 Shifts of the PL 

peak up to 20 nm have been observed and related to grain size, either controlled by the 

substrate morphology20, 34, 35 or by the synthesis for aggregated perovskite dots.36 On the 

other hand, theoretical studies correlate the optical band gap, and therefore PL 

wavelength, mainly with Pb-I-Pb bond angle and Pb-I bond length which could be 

controlled through the steric size of the molecular cation without altering the 

metal−halide chemistry.37,38 Grain size or defects located at the surface of the grains are 

invoked to explain the large emission wavelength variation observed both in bulk and 

films, though for different crystal size ranges, while theory points to modifications of 

the inorganic framework.  

In this work perovskite films are grown on commonly used electron and hole injection 

layers: compact TiO2, poly(3,4-polyethylenedioxythiophene) poly(styrene sulfonate) 

(PEDOT:PSS), commercial fluorine doped SnO2(FTO) and bare glass for comparison. 

MAPbI3:Cl films are compared with MAPbI3 polycrystalline powder. Synchrotron X-

Ray diffraction is used for an accurate structural characterization of films and bulk 

samples. Micro-photoluminescence (PL) and micro-Raman are used for in-situ 

monitoring the optical properties variations with irradiation power and time. First, we 

have identified the Raman and PL characteristics of unperturbed MAPbI3 bulk powder 

and films at very low laser power and studied their evolution and transformation in 

room ambient conditions at increasing laser power. We find that the nature of the 
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underneath substrate influences the properties of the MAPbI3:Cl films not only at the 

substrate-film interface as it is commonly believed but also the structure, morphology 

and composition of the whole film, so the bulk properties of the film. The different 

behavior for MAPbI3:Cl on oxide and polymeric PEDOT:PSS layers is indicative of the 

influence of the nature of the substrate on the reactivity of the MAPbI3:Cl film and on 

the role of oxygen in the radiative recombination. 

 

2. Experimental details 

2.1 Sample preparation 

Glass and glass/FTO substrates were cleaned with soap and deionized water, followed 

by sonication in a mixture acetone/ethanol (1:1v/v) during 15 min. The cleaned 

substrates were further treated with UV (ultraviolet) − O3 lamp during 15 min. The TiO2 

compact layer was deposited on glass/FTO by spray pyrolysis at 450°C using a solution 

of titanium diisopropoxidebis(acetylacetonate) solution (75% in 2-propanol, Sigma-

Aldrich) diluted in ethanol (1:39 v/v) and compressed oxygen as carrier gas. After 

spraying the precursor solution, the substrates were sintered on a hot plate during 5 min 

at 450 °C. Then, the hot plate was turned off, and the samples were left to cool down to 

room temperature. The PEDOT:PSS (Clevios P VP. Al 4083) layer was deposited by 

spin coating (3000 r.p.m. during 60 s). Then, the films were annealed on a hot plate at 

150 °C during 30 min.  

To obtain the hybrid halide perovskite MAPbI3:Cl  films, 100 µL precursor solution was 

prepared by mixing PbCl2 and CH3NH3I (1:3 molar ratio) (Aldrich, used as received) in 

anhydrous dimethylformamide (DMF, 40% w/w) and spin coated in air by onto the 

substrates, previously heated at 70 °C during 10 min, and cured at 100 °C in an oven 

under air flow during 90 min. The films thickness of the MAPbI3:Cl films is around 
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550-700 nm as evaluated by perfilometry (Figure S2). Also, for comparison, bulk 

MAPbI3 powder has been prepared by mixing 461 mg of PbI2 and 158,9 mg of MAI and 

grinding in an agatha mortar. The color changed immediately obtaining MAPbI3 as a 

brown-black powder.  

2.2 Characterization techniques 

The room temperature micro-photoluminescence (PL) and micro-Raman spectra were 

measured using 488 nm excitation wavelength of an Ar+ laser in backscattering 

geometry with an Olympus microscope, a ‘‘super-notch-plus’’ filter from Kaiser and a 

Jobin–Yvon HR-460 monochromator coupled to a Peltier cooled Synapse CCD. The 

light was collected from 0.8 µm or 4.5 µm diameter spots (corresponding to x100 and x 

20 objectives). Different neutral optical filters were used to avoid damaging the 

samples. The used laser power values were then: 6 µW, 50 µW, 100 µW or 4 mW. In 

situ PL measurements associated to Raman spectra were taken using the minimum 

output power density (6 µW, 12 W/cm2).  

Synchrotron X-ray diffraction data were collected on a six-circle diffractometer (15 

KeV; 0.826 Å) at the BM25B (SpLine) beamline at the European Synchrotron facility 

(ESRF), for the films deposited on the different substrates and for a powder sample at 

RT. A constant dry nitrogen flux was maintained on the samples to avoid possible 

degradation of the samples under the X-ray radiation in air. The six-circle 

diffractometer allowed different measurement configurations: i) the standard θ-2θ 

configuration with the transferred momentum perpendicular to the substrate and ii) in a 

geometry which reveals the in-plane order. In this later case, the incident angle is fixed 

to 2º and the detector is scanned in the horizontal plane so that the transferred 

momentum has its larger component in the substrate plane. Diffraction maxima were 

fitted using a Voigt function starting from the instrumental resolution values for the 
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profile parameters. These starting values were obtained by fitting data obtained for a 

powder Si standard reference supplied by NIST. The background was modeled by use 

of a twelve coefficient polynomial function. Lattice parameters were refined by the 

profile matching (Le Bail fit) procedure using the FullProf program integrated in the 

WinPLOTR software. 39 The average crystallite size was calculated using the Scherrer 

formula. The width (in transferred momentum) of the diffraction maxima of the same 

family was constant for each film for the whole measured range so strain effects are 

discarded.  

Even though MAPbI3 is a highly reacting material at room conditions that may lead to 

its degradation that derives in the quenching of the PL emission, upon the suitable 

conditions (very low incident laser power), the qualitative evolution of the emission and 

Raman spectra upon illumination or in dark are reproducible for the films prepared on 

the same substrate and over different places for each films. AFM and diffraction 

experiments are totally reproducible. 

 

3. Results and discussion 

3.1. Morphology and crystal structure  

To establish the correlation between the characteristics of the underneath layer substrate 

and those of MAPbI3:Cl film (as grain size, crystal size and optical properties) a 

morphological and structural study is required. The morphology of the four substrates 

glass, glass/FTO, glass/FTO/PEDOT:PSS and glass/FTO/TiO2) has been analyzed by 

atomic force microscopy (AFM) (Figure S1) and that of MAPbI3:Cl films by optical 

microscopy and contact profilometry (Figure S2). The average roughness measured by 

AFM in the substrates was: 3.2, 15.3, 0.8 and 6.8 nm for bare glass, FTO, PEDOT:PSS 

and TiO2 respectively. The thicknesses of the MAPbI3:Cl films were 650, 650, 550, and 
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750 nm for the films growth on glass, glass/FTO, glass/FTO/PEDOT:PSS, and 

glass/FTO/TiO2, with roughness of 156, 143, 116 and 126 nm respectively.  

The lattice parameters, preferential orientation and domain size were obtained for the 

MAPbI3:Cl films on the four substrates and compared to the MAPbI3 powder (bulk) 

sample. The MAPbI3 powder pattern was fit within the non-centrosymmetric I4cm 

space group (in Supp. Info. Figure S3and Table S1) and the same group was used for 

the films (in Supp. Info. Figure S4 and S5). The films show a very strong preferential 

orientation in the <110> direction as evidenced by comparing the relative intensities of 

the different reflections with those of the powder sample (Figure 1a), and in particular 

of (004) and (220) maxima (Figure S5). The tetragonal symmetry of MAPbI3 perovskite 

can be approximated to a pseudocubic one where the correlation of the lattice 

parameters with the tetragonal description is as follows: apc = bpc = at/√2 = bt/√2 and cpc 

= ct/2, inset of Figure 1. Note that the tetragonal (004) and (220) reflections result from 

the splitting of the (200) reflection in the pseudocubic perovskite representation.  
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Figure 1. (a) Synchrotron X-Ray (15 keV = 0.826 Å) patterns of MAPbI3:Cl  films on glass 

(red), glass/FTO (FTO; olive), glass/FTO/TiO2 (TiO2; dark blue), glass/FTO/PEDOT:PSS 

(PEDOT; blue) and MAPbI3 powder (black) for comparison. The allowed Bragg reflections in 

I4cm space group are indicated, (b) (220) rocking curve of MAPbI3 on glass, (c) zoom of the θ-

2θ scan of MAPbI3 on glass and, (d) of the δ scan of MAPbI3 on glass. Inset: Crystal structure 

of MAPbI3 on the ab-projection showing tetragonal and pseudocubic cells. 

It can be seen that the intensity of all diffraction peaks with high l index (as 004, 213, 

114, 204 or 224) are depleted indicating not only the prevalence of the <110> 

orientation but also that c-axis tends to be contained in the substrate plane for any of the 

other orientations. The width of the rocking curve of the (220) reflection (Figure 1b) 

indicates that the angular variation of the (220) grains around the surface normal is 
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around 4º. To test the in-plane orientation of the film on glass we recorded the diffracted 

intensity in a configuration with the transferred momentum almost parallel to the 

surface with a fixed incident angle (2º) and scanning the detector angle (delta) in the 

sample plane (Figure 1d). The comparison of this scan to the standard θ-2θ scan (Figure 

1c) clearly shows that (004) grains, and therefore c axis, are parallel to the substrate.  

 

Figure 2.(a) Variation of the crystallite size for MAPbI3:Cl on glass, glass/FTO, 

glass/FTO/TiO2, glass/FTO/PEDOT:PSS and MAPbI3 powder, for crystals in the <110> 

direction (red circles) and average value for the other directions (green stars) (b) Pseudocubic 

lattice parameters (apc and cpc) of MAPbI3:Cl for this series, (c) Substrate roughness dependence 

of  the pseudocubic lattice parameter apc and (d) preferred orientation. 

 

The crystallite sizes for the differently oriented grains (Dhkl) shown in Figure 2a are 
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and this behavior is enhanced in the films especially when deposited on bare glass. The 

ratio between the integrated intensity of the 220 reflection and the total integrated 

intensity between 14.5º and 19.5° in two-theta (the definition is detailed in SI) provides 

an estimation about the <110> preferred orientation degree which is also indicating the 

random-oriented grain fraction of MAPbI3:Cl films. The <110> preferred orientation 

fraction reaches its maximum for PEDOT:PSS substrate (Figure 2d). 

A very important conclusion of this study is that the lattice parameters of the 

MAPbI3:Cl films are found to be sensitive to the substrate, see Figure 2b. The obtained 

changes in lattice parameters indicate that the Pb-Pb distance varies around 0.7% for the 

film on PEDOT:PSS compared to that on FTO. The use of synchrotron radiation has 

allowed an accurate determination of the lattice parameters, see Figure 2b. Note that 

the variations reported from among different substrates are larger than the error bars. 

The substrate dependence of the pseudocubic lattice parameters is depicted in Figure 

2c. The presence of an oxide substrate (FTO or TiO2) produces a shrinking of both 

parameters (apc and cpc) compared to those in bulk, while that of PEDOT:PSS layer 

below, with a quite different chemical nature, an increase. A physical origin of this 

dependence (strain imposed by the substrate) is not especially expected for these quite 

large MAPbI3:Cl crystalline domains (from 80 to 140 nm) since no epitaxial growth is 

occurring. We therefore propose that the chemical nature and reactivity (related to the 

roughness and density of the underneath layer) of the substrate is modifying the lattice 

parameters more probably by varying chloride content as well as by the incorporation of 

oxygen and iodine vacancies in the MAPbI3:Cl films during the synthesis.  

Within each film, the crystallite size measured by diffraction is different depending on 

its crystallographic orientation relative to the substrate being larger for those grains 

[110] oriented (or [100] and [010] in the pseudocubic representation as shown in the 
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inset of Figure 2) for all substrates. The average crystal sizes vary in a range from 40 to 

140 nm and the prevalence of (110) grains increases on smoother substrates. The (110) 

preferential orientation growth of MAPbI3:Cl on TiO2 (anatase) has been reported to be 

related to a higher binding energy between MAPbI3:Cl (110) and TiO2 (101) surfaces 

compared to that of the other orientations. The higher binding energy is calculated to be 

due to the better structural matching between rows of adjacent perovskite halides and 

TiO2 under-coordinated titanium atoms due to the octahedral tilting in MAPbI3.
40 

However the present results indicate that this preferential orientation occurs for any of 

the evaluated substrates which are polycrystalline or even amorphous and thus do not 

present a defined orientation. When no epitaxy can occur between the film and the 

substrate, as it is the case, the denser planes usually grow parallel to the substrate. In fcc 

structures this corresponds to (111) planes or in hcp to (001), but here, using the 

pseudocubic representation, the grains are (100) oriented which is not the denser. This is 

therefore an intrinsic and specific characteristic of MAPbI3.  In a cubic perovskite the 

[100], [010] and [001] directions are totally equivalent and, in the distorted pseudocubic 

MAPbI3 perovskite, these are also very similar directions. To explain the prevalence of 

(100)pc grains we propose that, since the film grows directly from a solution onto the 

substrate, the driving force for the grain alignment may be the only strongly non 

isotropic component which is the axial the MA+ molecule. . The CN-methylamonium 

bond axis, in the non-centrosymmetric I4cm space group, is along the [001] direction 

which, for the (110) grains, lies in the perovskite-substrate interface. In this case we can 

understand that the substrate roughness is an important factor for the fraction of the 

grains (110) oriented, as evidenced in our results. The key point may rather be related to 

the orientation of MA cations on the surface. Moreover, the preferential (110) fraction is 

found to increase as the roughness of the underneath layer is reduced (Figure 2d) 
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indicating also that the interface morphology and chemical nature are playing a role in 

the nucleation and growth of the MAPI3:Cl grains. Previously we have reported that 

preferential orientation of perovskite layer is also influenced by the presence of 

scaffold.41 

 

3.2. Photoluminescence and Raman analysis. 

The measured steady state PL band maximum lies within in a close range, 775.5-779 

nm, for MAPbI3:Cl  films on the different substrates exciting at 488 nm laser 

wavelength with very low power (6 µW, 12 W/cm2) ( left panel of Figure S6) which 

corresponds well to the reported MAPbI3 emission.42  We did not observed a large 

difference in the PL wavelength for the  films contrary to the large variations reported 

before .20,36,34 The measured PL wavelengths do not correlate to the observed lattice 

parameters, which are directly related to the Pb-Pb interatomic distances. The 

homogeneity of the PL intensity for the different samples has been checked by micro-

PL images within 20x20 µm size areas (right panel Figure S6). The most uniform 

emission is for the films on PEDOT:PSS and TiO2 even if their roughness is very 

different (0.8 and 6.8nm).The structural and morphologic diversity of the films does not 

have important impact on the PL thus we find that the small changes in the emission 

peaks are not related to crystal size, within the 40 – 140 nm range, to substrate 

roughness up to around 16 nm or to obtained small variations of lattice parameters. 

Theoretical studies predict a variation of around 0.02 eV/degree for bang gap energy 

with Pb-I-Pb angle. 37,38 Assuming that the mayor effect derived from the observed 

lattice parameter variation (around 0.7%) is due to the change in Pb-I-Pb angles 

maintaining Pb-I bond lengths, a change in the bang gap of 0.02 eV (10 nm), larger than 

that observed (3 nm), is expected. However experimental data for hybrid SnI 37 
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perovskites show variations in the 0 to 2 nm range for equivalent angle change. 

Therefore the observed wavelength shifts are more probably influenced by the presence 

of defects since substitutional Cl and oxygen and I vacancies may induce local 

modifications of the exciton binding energies.  

 

3.2.1. Bulk perovskite 

To study the influence in the emission properties of different parameters on MAPbI3:Cl 

films, as their morphology or environmental and substrate effects in devices, it is 

important to undoubtedly identify possible degradation residues. These halide 

perovskites present low energy formation and therefore also require low energy to 

separate the perovskite solid into ions during operation. 9The laser itself and ambient 

conditions can induce degradation that may lead to misinterpretation because Raman 

signal from the perovskite can be much lower than those of precursor compounds and/or 

degradation products. In addition the kind of degradation observed depending on the 

substrate can provide important information on the influence of substrate in the film 

bulk properties. Raman spectra at different laser power were collected and compared 

with the spectra of possible residues generated upon light irradiation. 
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Figure 3. Raman spectra obtained with 488 nm excitation at RT for low (left) and high (right) 

frequency ranges of (a) PbO2 (green line) and (b) PbI2 polycrystalline samples. Resonant Raman 

spectra obtained at low laser power (orange lines) showing the typical Raman modes (left panel) 

and emission of PbI2 (right panel) and, at high power (olive lines) show its transformation into 

PbOx. (c) MAI (purple lines), (d) bulk MAPbI3 spectra at low laser power (black lines with their 

fit), high power (olive lines) showing the transformation into PbOx and low power with water 

droplet (orange lines) showing the transformation into PbI2. The vertical dash-dot lines signal 

the MAPbI3 Raman peaks. (* indicate laser plasma line). 
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for relevant related compounds (PbO2, PbI2 and MAI) are shown in Figure 3 in the low 
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Figure 3a, the olive line corresponds to PbO2 spectrum. In Figure 3b, orange lines are 

the spectra of PbI2 pressed pellet and small crystals present on the surface at low laser 

power (50µW, 2.5kW/cm2) while olive ones are measured with high power (4mW, 200 

kW/cm2). PbI2 has an energy gap typically of 2.5 eV 43 and is therefore Raman resonant 

under 488 nm (2.54 eV) excitation. In this situation the intensity of the peak around 210 

cm-1 (assigned to a two-phonon mode) is enhanced compared to the first order Raman 

modes around 110-120 cm-1, this peak being not observable out of resonance. The broad 

band detected at 770 cm-1 in Raman shift (right panel) is more probably due to the 

exciton emission (2.45 eV) close to the bandgap of PbI2. The spectra are totally 

modified when increasing the laser power, from 50µW to 4mW. In this case the 

observed spectra correspond to lead oxide similar to that shown in Figure 3a. Different 

lead oxides can be formed (PbO, PbO2, Pb3O4) but all show a characteristic peak in the 

range 135-140 cm-1.44,45 In the present case the peak at 138 cm-1 and the presence of the 

two-phonon peak around 278 cm-1 indicate the transformation of PbI2 into PbO2. This 

transformation is observed also for the films, as we will see below. Figures 3c collects 

the spectra of MAI, which is a precursor of the synthesis. Beside the internal modes of 

MA detected at frequencies above 900 cm-1, a narrow Raman peak at 115 cm-1 is more 

probably due to a MA mode. MAI is totally stable with laser power.   

MAPbI3 is well known to be very susceptible to the laser power and to atmosphere, in 

particular to humidity. At very low laser power the obtained spectrum, plotted in black 

lines in Figures 3d, is very well fitted to two Lorentz functions peaking at 127 and 237 

cm-1. As the incident power is increased in low humidity atmosphere (<40%) the 

spectrum is progressively modified reaching the situation plotted in olive lines which 

clearly corresponds to PbO2, as in the case of PbI2, measured at high power as 

previously described. In these conditions only the addition of a water droplet produces 
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the transformation to PbI2 (orange spectra) showing both Raman modes and 

luminescence band. In any of these situations, transformation of MAPbI3 into PbI2 or 

PbOx, the intense characteristic PL emission band of MAPbI3 perovskite around 775 nm 

vanishes. Raman peaks in the range 135-140 cm-1 are undoubtedly indicating the 

formation of PbOx. The experimental frequencies obtained here for the different 

compounds are summarized in Table SI together with some reported experimental and 

calculated ones. The observed MAPbI3 band around 127 and 237 cm-1 are associated to 

MA+ libration and torsional modes respectively. The assignment discussion is detailed 

in the Supp. Info. 

This extreme susceptibility of MAPI3 and the large width of the bands make difficult 

extracting information from the Raman spectra for these compounds. A key question is 

why Raman peaks are so poorly defined. On one hand the bandgap of MAPbI3 (around 

1.6 eV) is smaller than most of the laser excitation energies used for Raman 

spectroscopy therefore the high absorption and the use of highly focused beams produce 

important local heating of the samples. In our case we monitored the stability of the 775 

nm characteristic PL emission and associated Raman spectra to elucidate if any 

transformation of the sample was occurring. Nevertheless, the actual temperature of the 

sample at the laser spot may be increased and, since MAPbI3 suffers a structural 

transition at only around 30ºC above RT, the sample can transit to the high temperature 

phase. In this case, the Raman modes may differ from those of the RT tetragonal I4cm 

phase. Nevertheless a small temperature increase does not justify the observed large 

peak width. Above 160 K the MA+ ions are tumbling within the inorganic cage. 46 This 

movements induces a dynamical disorder in the Pb-I octahedra which, through the 

coupling between MA and Pb-I octahedra, will influence the MA libration and torsional 

modes. This situation can be paralleled to the effect of polaron hopping in doped 
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manganese perovskites (as La1-xCaxMnO3) in the paramagnetic phase. We reported that 

the hopping electron induces a dynamical Jahn Teller distortion of the perovskite 

structure so that wide poorly defined Raman peaks are detected.47 We therefore propose 

that the Raman peak width is related to the dynamical deformations induced by the MA 

tumbling in the tetragonal and cubic or pseudocubic phases. 

 

3.2.3 Films on different substrates  

Similar formation of PbOx lead oxide is observed also for the films on glass (Figure 4), 

FTO and FTO/TiO2 substrates (Figure S7).The identification of these peaks to PbOx is 

crucial since some authors reported the 140 and 270 cm-1 peaks as MAPbI3 phonons.32 

Recently Kong et al. 48  reported that oxygen intercalation into the frameworks of 

MAPbI3 induced by photocatalysis on the surface induces this 140 cm-1 peak. But in 

fact this peak is more probably related to the partial transformation of MAPbI3into PbOx 

as the PL emission is quenched. Also, some authors associate the 140 cm-1 peak to the 

TiO2 buffer layer.49  But the usually small thickness of TiO2 layers in devices, the 

nanosize of the particles, their uncertain ordering and the strongly absorbing MAPbI3 

overlayer make improbable the detection of Raman TiO2 modes. Therefore, in this case 

also, these bands are indicating the formation of PbOx. As far as we know there is no 

assignment to PbOx phases in previous works. 
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Figure 4. (a) Raman spectra of MAPbI3:Cl film on glass at low power incident light (1, red line) 

and increasing laser power: 1= 50 µW (2.5 kW/cm2), 2= 100 µW (5 kW/cm2), 3= 1 mW (44 

kW/cm2), 4= 3 mW (130 kW/cm2) and 5= 4 mW (200 kW/cm2) respectively, and (b) 

corresponding PL emission obtained at a constant low laser power, 6 µW (0.3 kW/cm2), just 

after recording the Raman spectra (c) difference of Raman spectra 1 and 2 and (d) evolution 

with irradiation of the PL wavelength for the 4 stages. Purple lines indicate the emerging peaks 

of the intermediate stage at 110 and 165 cm-1 and green line and arrow the final PbOx stage. 

 

The perovskite film has been intentionally degraded by increasing progressively the 

laser illumination power to obtain information about defects nature in the different 

samples analyzed. The Raman spectra obtained at different laser power and the PL 

recorded at constant very low laser power(6 µW, 0.3 kW/cm2)from the same location in 

the sample were obtained for the films on the four different substrates (Figures 4 and 

S7). In Figure 4 we can observe the Raman spectra for the perovskite film on glass with 

increasing incident power laser and their associated PL emission. At the lowest power 

(stage 1) the spectra are similar to that of bulk MAPbI3 but in stage 2 quite sharp peaks 
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at 110 and 165 cm-1 are detected concomitantly to a significant PL intensity increase 

(Figure 4b). In stages 3 and 4 the PL decrease coincides with the appearance and 

increase of a peak at 138 cm-1 which we previously demonstrated to be the fingerprint 

of the formation of PbOx, see Figure 3. Finally in stage 5 the PL peak disappears 

completely (not shown) and major transformation to PbOx within the laser spot occurs. 

Intermediate stage 2 is especially interesting since an enhancement of PL intensity is 

occurring, see Figure 4b. Light-induced halide migration has been reported to occur in 

metal halides such as PbBr2 andPbI2.
50,51Also, halide vacancies and halide migration are 

energetically probable in hybrid halide perovskites.52,53 Thus, in this stage 2, the Raman 

modes at 110 and 165 cm-1 may be activated by the presence of different type of defects 

as halide vacancies and the incorporation of oxygen into these vacancies of the MAPbI3 

structure. Nevertheless halide vacancies are required for charge neutrality compensation 

of O2-, therefore a certain concentration of vacancies will be present. The evolution of 

Raman spectra is similar for the films in all substrates except that for PEDOT:PSS 

where PbOx phase cannot be identified, see Figure S7. Also the transformation degree 

for a given laser power is not identical for the four films.  

It is important to highlight that Raman spectra are originated from the top part of the 

perovskite film as absorption depth for the employed excitation wavelength (488 nm) is 

around 85 nm, (much smaller than the film thicknesses) calculated from reported 

absorption coefficient. 54  Consequently the light induced observed changes are not 

originated in the perovskite/substrate interface but in the bulk of the film. Nevertheless, 

the different behavior observed for samples grown on oxide or on PEDOT:PSS 

substrates, see Figure S7, are explained by the influence of the substrate in the 

nucleation and growth of the film, not only in terms of structure and morphology but 

also regarding the type and relative content of point defects. So that the chemical nature 
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of bulk MAPbI3is indeed affected by the substrate which plays an important role in light 

induced modifications. 
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Figure 5. Evolution of the PL corresponding at each Raman stage induced by increasing 

incident laser power. (a) Evolution of the PL intensity normalizing at initial state, (b) 

wavelength and (c) FWHM. 

 

Figure 5 summarizes the evolution of the corresponding PL band at each Raman stage 

(obtained after recording the Raman spectra at the same position with very low laser 

power) for the four films. Only small changes are detected in the PL wavelength and 

FWHM but the intensity does significantly vary. Associated to the appearance of 

Raman peaks related to the incorporation of oxygen, and possibly also of vacancies as 

mentioned above, (stages 2 and 3), the PL intensity increases and reaches its maximum 

value either in stage 2 or 3 depending on the substrate. In stage 4, when the 

transformation to PbOx is evidenced in Raman spectra, the PL intensity decreases. We 
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propose that the intensity increase in stages 2 - 3 can be related to e-h exciton 

localization by the photo-induced defects. The localization of the excitons would 

enhance the radiative recombination probability by hindering charge mobility. The 

different behavior for MAPbI3:Cl on polymeric PEDOT:PSS layer, where increasing the 

incident power does not produce an increase in PL intensity, is indicative again of the 

influence of the nature of the substrate in the final properties of the perovskite film. 

At the lowest incident laser power the Raman spectra of the samples do not evolve 

apparently but, maintaining sufficient time the laser beam illuminating the samples can 

induce stage 2 and PL shows changes over time. Upon illumination, PL emission of 

MAPbI3:Cl  films again exhibits different effects for the different substrates, despite 

excitation light is absorbed on top perovskite layer far from the substrate. Figure 6 

shows the evolution of the PL wavelength, full width and intensity normalized to the 

initial state different times under illumination of 6µW (12 W/cm2) 488 nm laser light 

(solid symbols) and dark condition (open symbols) up to 4 hours for the  films on the 

four substrates. The PL intensity experiences an irreversible enhancement of different 

degree depending on the substrate, being more pronounced for oxide substrates. The 

intensity continuously increases upon illumination and, after the laser light is turned off 

and the sample is kept in the dark, the PL remains almost constant for hours. The 

observed effect is therefore not reversible, contrary to ref 55  for MAPbI3 in N2 

atmosphere, and we conclude that the creation of defects is permanent.  
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Figure 6. (a) Evolution of the PL intensity normalized to initial state measured at very low 

incident laser power (6 µW,  12 W/cm2) (b) PL wavelength, and (c) full width at half maximum 

(FWHM) over time up to 4 hours for the  films on the four substrates, under illumination of 488 

nm laser light (solid symbols) and dark (open symbols). Black square for glass, red circles for 

FTO, green stars for TiO2 and blue triangles for PEDOT:PSS. 

Studies of the PL properties in air, nitrogen, and oxygen/helium environment suggest 

that oxygen is important for PL enhancement.56 In fact, the role of oxygen is supported 

by the fact that PL intensity decreases upon white illumination in N2 environment.55,55,57 

PL intensity enhancement upon illumination in ambient conditions has been reported 

and tentatively explained by a catalytic reaction induced by oxygen in inorganic SrTiO3 

thin film perovskite. 58  Other studies reported diverse behaviors of the 

photoluminescence of MAPbI3:Cl upon light irradiation and environments. A slow rise 

of the PL over a time scale of seconds 59 has been associated with the passivation of gap 
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states acting as subgap nonradiative pathways. Nevertheless most defects are shallow 

traps and are therefore not expected to act as non-radiative decay paths.60,61At longer 

irradiation times, minutes, a PL enhancement, and lifetime increase from nanoseconds 

to hundred nanoseconds, has been observed 62 and associated to the de-activation by a 

photochemical reaction involving oxygen of trapping sites responsible for non-radiative 

charge recombination. Which are the initial traps and where the oxygen incorporates is 

not clarified. On the other hand, Shi et al. 63  calculated the defect states involving 

oxygen suggesting that small O2-ions for I- vacancy replacement is feasible. The 

calculations are compatible with the here proposed scenario in which laser illumination 

and oxygen presence induce the incorporation of oxygen and the presence of iodine 

vacancies and substitutional Cl- with different concentrations depending on the 

substrate. The samples with more stable behavior over time, films on TiO2 and FTO, 

can obtain oxygen diffused through the surface and from the layer below, contrary to 

the film on glass. Consequently the substrate induced changes in the MAPbI3:Cl film 

structure, more probably originated by different concentrations of defects (likely 

substitutional Cl, oxygen or vacancies), and the nature of the substrate determine the 

emission properties and the sensitivity to light. Ambient oxygen is a relevant factor in 

the observed PL enhancement associated to stage 2 and the peaks at 110 and 165 cm-1 

observed in Raman spectra could be indicative of its incorporation. Our results provide 

important insights in the importance of the nature of the substrate on the bulk properties 

of halide perovskite grown on its top, aimed to provide important clues on working 

mechanism of PSCs and pointing to optimize the performance of perovskite based 

optoelectronic devices. 
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Conclusions 

In summary, we have shown that the substrate influences the bulk properties of the 

MAPbI3:Cl films by a systematic structural and optical characterization of perovskite 

films grown on glass, glass/FTO, glass/FTO/PEDOT:PSS and glass/FTO/TiO2 

substrates. The perovskite films present a strong preferential orientation in the <110> 

direction for any of the evaluated substrates. The preferential (110) fraction is found to 

increase as the roughness of the substrate is reduced indicating that the interface 

morphology is playing a role in the nucleation and growth of the MAPbI3:Cl grains. The 

key point may be related to the orientation of the CN-methylamonium bond axis at the 

MAPbI3:Cl-substrate interface which is parallel to the substrate for the (110) grains in 

the non-centrosymmetric I4cm space group. The average crystal sizes vary in a range 

from 40 to 140 nm and the prevalence of (110) grains increases on smoother substrates. 

Besides, the chemical nature and reactivity of the substrate is modifying also the lattice 

parameters by varying chlorine content as well as by the incorporation of oxygen and 

probably iodine vacancies in the MAPbI3:Cl films during the synthesis. The obtained 

changes in lattice parameter indicate that Pb-Pb distance varies around 0.7%.  

Low frequency Raman modes of bulk and films are broad peaks around 127cm-1 (MA 

libration) and 237 cm-1(MA torsional mode) and their widths are related to dynamical 

deformations of the Pb-I octahedra induced by the MA tumbling. Light induces the 

progressive modification of the perovskite up to its transformation into PbOx revealed 

by Raman peaks at around 138 and 270 cm-1 besides PL quenching. The addition of 

water is required for its transformation into PbI2 (110 and 220 cm-1 Raman peaks). A 

different behavior for MAPbI3:Cl films grown on oxide layers (TiO2 and FTO) is 

observed compared to that on PEDOT:PSS polymer where PbOx is not detected. An 

intermediate stage shows quite sharp peaks at 110 and 165 cm-1 concomitantly to a 
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significant PL intensity increase in all substrates except on PEDOT:PSS. These Raman 

peaks may be activated by the presence of defects as oxygen incorporation and halide 

vacancies.  

 A non reversible increase of PL with illumination time has been observed for samples 

on oxide substrates but not for that on the polymer substrate. The intensity increase can 

be related to localization of a fraction of the electron-hole excitons by the photo-induced 

defects enhancing the radiative recombination by hindering charge mobility. The 

different behavior for MAPbI3:Cl on  PEDOT:PSS layer is indicative of the influence of 

the nature of substrate on the reactivity of MAPbI3 films and the role of oxygen in the 

radiative recombination rate. 

The mechanism that we propose for the observed changes in the structure, crystal size 

and preferential orientation of the perovskite films as a function of the substrate are due 

mainly to the roughness of the surface but also to its chemical nature. The substrate 

roughness is a key factor in the morphology of the perovskite grains but also in the 

concentration of defects (substitutional Cl, oxygen and vacancies) by providing 

different density of nucleation sites and grain growth dynamics. On the other hand, the 

different behavior with illumination time and power of the films synthesized on 

polymeric substrate (PEDOT) compared to the inorganic oxide ones (TiO2, glass and 

FTO) indicate that the chemical nature of the substrate is playing a role in the relative 

concentrations of the point defects. These defects are originated within the perovskite 

film structure during the growth which in turn gives rise to the different degradation and 

modification with illumination. We also demonstrate the influence of the nature of the 

substrate on the reactivity of the MAPbI3 film and the role of oxygen in the radiative 

recombination rate. 
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This work highlights how substrate influences not just the interfacial properties of 

perovskite devices but also bulk perovskite properties, fact with important implications 

on the PSC working mechanisms. In this sense, major implications on the solar cell 

performance can be anticipated from the substrate choice and it will have important 

implications on the device optimization. 
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