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Abstract

We obtain generalizations of the main result in [18], and then provide geo-
metric interpretations of linear combinations of the mean curvature integrals
that appear in the Gauss-Bonnet formula for hypersurfaces in space forms
Mn

λ . Then, we combine these results with classical Morse theory to obtain
new rotational integral formulae for the k−th mean curvature integrals of a
hypersurface in Mn

λ .
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1. Introduction

Let Mn
λ denote a simply connected Riemannian manifold of constant sec-

tional curvature λ. Further, let Lnr denote a r−plane, (r ≤ n), namely a
totally geodesic submanifold of dimension r in Mn

λ , and let dLnr denote the
corresponding density, invariant under the group of Euclidean and non Eu-
clidean motions. A r−plane through a fixed point O in Mn

λ , and its invariant
density, are denoted by Lnr[0] and dLnr[0], respectively [16].

In [8] a new expression for the density of r−planes in Mn
λ has been ob-

tained in terms of the density dLnr+1[0], of the density dLr+1
r of r−planes in

Lnr+1[0] and the distance ρ from O to Lr+1
r . Thus, an invariant r−plane in Mn

λ

may be generated by taking first an isotropic (r + 1)−plane through a fixed
point O and then an invariant r−plane within this (r + 1)−plane, weighted



by a function of ρ.

This construction, called the invariator principle in Mn
λ ([19]), has opened

the way to solve rotational integral equations for different quantities as the
volume of a k−dimensional submanifold in Mn

λ [8], the k−th mean curvature
integrals or k−th intrinsic volumes ([10] and [1], and different curvature mea-
sures ([19] for λ = 0)). The solutions of these equations allow to express these
quantities as the integral of some functionals defined in sections produced by
isotropic planes through a fixed point. Moreover, in [19], the authors, using
classical Morse theory, rewrite the volume of compact submanifolds in Rn

of dimension n − r, in terms of critical values of the sectioned object with
(r + 1)−planes; and in [9] related generalizations valid for submanifolds in
space forms of constant curvature are obtained.

On the other hand, in [18] it is proved that the Gauss-Bonnet defect
of a hypersurface in Mn

λ is the measure of planes Lnn−2 meeting it, counted
with multiplicity. From this result an integral-geometric proof of the Gauss-
Bonnet theorem for hypersurfaces in Mn

λ is given.

The purpose of this paper is twofold: to obtain generalizations of the
main result in [18], following a completely different route; and to combine
these results with classical Morse theory to obtain new rotational integral
formulae for the k−th mean curvature integrals of a hypersurface in Mn

λ .

2. The Gauss-Bonnet theorem in Mn
λ

Let Q ⊂ Mn
λ be a compact domain with smooth boundary S = ∂Q.

Let V denote the volume of of Q, F the (n − 1)−surface area of S, χ(Q)
the Euler-Poincaré characteristic of Q, and Mi the i−th integral of mean
curvature of S. The Gauss-Bonnet formula for S states that [16]

cn−1Mn−1 + λcn−3Mn−3 + · · ·+ λ
n−2
2 c1M1 + λ

n
2 V =

1

2
Onχ(Q), (1)

for n even, where Ok = vol(Sk) (surface area of the k−dimensional unit
sphere), and

cn−1Mn−1 + λcn−3Mn−3 + · · ·+ λ
n−3
2 c2M2 + λ

n−1
2 c0F =

1

2
Onχ(Q), (2)
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for n odd, where

ch =

(
n− 1
h

)
On

OhOn−1−h
. (3)

If n is odd, we can use the equality 2χ(Q) = χ(S), and for λ = 0, in any
case, we obtain Mn−1 = On−1χ(Q).

Let Lr be the space of r−dimensional totally geodesic submanifolds of
Mn

λ . Our first result is the following theorem, which is a generalization of
the main result in [18].

Theorem 2.1. For n and r even, or n and r odd, we have

1

2
Onχ(Q)−cn−1Mn−1 − λcn−3Mn−3 − · · · − λ

n−r−2
2 cr+1Mr+1

= λ
n−r
2

Or . . . O1

On−1 . . . On−r

∫
Lr
χ(Q ∩ Lnr )dLnr .

(4)

Proof. We begin assuming that n and r are both even numbers. Given a
r−plane Lnr of Mn

λ , Qr = Lnr ∩ Q is, in general, a domain of dimension r in
Lnr . Applying Eq.(1) to Qr we obtain

c′r−1M
′
r−1 + λc′r−3M

′
r−3 + · · ·+ λ

r−2
2 c′1M

′
1 + λ

r
2V (Qr) =

1

2
Orχ(Qr), (5)

where M ′
i is the i−th integral of mean curvature of ∂Qr and

c′h =

(
r − 1
h

)
Or

OhOr−1−h
. (6)

Eq.(14.69) for q = n and Eq.(14.78) of [16], which are valid for Mn
λ , are∫

Lr
V (Qr)dL

n
r =

On−1 . . . On−r

Or−1 . . . O0

V (Q) (7)

and ∫
Lr
M ′

i dLnr =
On−2 . . . On−rOn−i

Or−2 . . . O0Or−i
Mi. (8)

Now, having the preceding equalities in mind, we integrate Eq.(5) and we
obtain

dr−1Mr−1+λdr−3Mr−3 + · · ·+ λ
r−2
2 d1M1 + λ

r
2d0V

=
1

2
Or

∫
Lr
χ(Qr)dL

n
r ,

(9)
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where

di =

(
r − 1
i

)
Or

OiOr−1−i

On−2 . . . On−rOn−i

Or−2 . . . O0Or−i
; i = 1, 3, . . . , r − 1; (10)

d0 =
On−1 . . . On−r

Or−1 . . . O0

. (11)

We multiply Eq.(9) by λ(n−r)/2

d0
to obtain

λ
n−r
2 kr−1Mr−1+λ

n−r+2
2 kr−3Mr−3 + · · ·+ λ

n−2
2 k1M1 + λ

n
2 V

=
1

2
λ
n−r
2
Or

d0

∫
Lr
χ(Qr)dL

n
r ,

(12)

where

ki =

(
r − 1
i

)
OrOr−1On−i

OiOn−1Or−iOr−i−1
. (13)

If we compare the constants ki and ci in Eq.(1), using the equality (k−1)Ok =
O1Ok−2, we have that

ki = ci; (14)

then, Eq.(12) can be written as

λ
n−r
2 cr−1Mr−1+λ

n−r+2
2 cr−3Mr−3 + · · ·+ λ

n−2
2 c1M1 + λ

n
2 V

=
1

2
λ
n−r
2
Or

d0

∫
Lr
χ(Qr)dL

n
r ,

(15)

and, from Eq.(1) we obtain the result for the case n and r even.
If we consider that n and r are both odd numbers the proof is similar to

the preceding one but considering, instead of Eq.(7), the following equality
(Eq.(14.69) of [16] with q = n− 1):∫

Lr
F (∂Qr)dL

n
r =

On . . . On−rOr−1

Or . . . O0On−1
F, (16)

where F (∂Qr) is the (r − 1)−surface area of ∂Q ∩ Lnr = ∂(Q ∩ Lnr ). �

Remark. For r = n − 2, Theorem 2.1 gives Theorem 1 of [18] and, as a
result of Theorem 2.1, we obtain the following corollary which is equivalent
to Proposition 7 of [18].
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Corollary 2.2. Let Q be a compact domain in Mn
λ and Lr ∈ Lr, we have

Mr =
(n− r − 1)Or . . . O0

On−2 . . . On−r−2

∫
Lr+1

χ(Q ∩ Lnr+1)dL
n
r+1

− λ rOr−2 . . . O0

On−2 . . . On−r

∫
Lr−1

χ(Q ∩ Lnr−1)dLnr−1.
(17)

Proof. When r is an even number, Eq.(15) divided by λ
n−r
2 is

cr−1Mr−1 + λcr−3Mr−3 + · · ·+ λ
r−2
2 c1M1 + λ

r
2V =

1

2

Or

d0

∫
Lr
χ(Qr)dL

n
r ; (18)

and the corresponding equation to Eq.(15) divided by λ
n−r
2 when r is an odd

number is

cr−1Mr−1 + λcr−3Mr−3 + · · ·+ λ
r−3
2 c2M2 + λ

r−1
2 c0F =

1

2

Or

d0

∫
Lr
χ(Qr)dL

n
r .

(19)
If r is odd, subtracting each part of Eq.(18), with r −→ r+ 1, minus the

corresponding part of λ multiplied by Eq.(18) with r −→ r−1 we obtain the
result. If r is even, we proceed in the same way but using Eq.(19) instead of
the Eq.(18). �

Remark. For λ = 0, Eq.(17) coincides with Eq.(14.79) of [16].

3. Rotational integrals and Morse representations for Mr

From rotational integral formulae we obtain quantitative properties (as
Mr) of differential manifolds in Mn

λ , from the intersection of the manifold
with planes (totally geodesic submanifolds) through a fixed point O. In this
context, from Eq.(17), we will find measurement functions αr defined on
Lnr+2[0] ∩Q with rotational average equal to Mr, that is,

Mr =

∫
Ln
r+2[0]

∩Q 6=∅
αr(L

n
r+2[0] ∩Q)dLnr+2[0]. (20)

Theorem 3.1. Let Q ⊂ Mn
λ be a compact domain with smooth boundary

S = ∂Q. The measurement functions αr corresponding to the r−th integral
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of mean curvature of S, Mr, can be expressed as

αr(L
n
r+2[0] ∩Q) =

Or−2 . . . O0

On−2 . . . On−r−2[
(n− r − 1)OrOr−1

∫
χ((Q ∩ Lnr+2[0]) ∩ Lr+2

r+1)s
n−r−2
λ (ρ)dLr+2

r+1

−λrO1O0

∫
χ(((Q ∩ Lnr+2[0]) ∩ Lr+2

r[0] ) ∩ L
r
r−1))s

n−r
λ (ρ)dLrr−1dL

r+2
r[0]

]
,

(21)

where, in both integrals, ρ is the distance from O to the planes Lr+2
r+1 and Lrr−1,

respectively; and

sλ(ρ) =


λ−1/2 sin(ρ

√
λ), λ > 0

ρ, λ = 0

|λ|−1/2 sinh(ρ
√
|λ|), λ < 0

. (22)

Proof. The idea of the proof consists in generating the planes Lnr+1 and Lnr−1,
which appear in Eq.(17), by taking first an isotropic plane through O and
then an invariant plane within this isotropic plane, weighted by a function
of ρ; that is, from Corollary 3.1 of [8] we have the identity

dLnr+1 = sn−r−2λ (ρ)dLr+2
r+1dL

n
r+2[0], (23)

and also
dLnr−1dL

n
r+2[r] = sn−rλ (ρ)dLrr−1dL

n
r+2[r]dL

n
r[0], (24)

where dLnr+2[r] denotes the density for (r+2)−planes about a about a r−plane

Lnr (see page 202 of [16]).
As justified in [16], p. 309, before Eq. (17.55), from the expressions of the

densities of planes in Mn
λ it follows that some density decompositions (such

as [16], Eq. (12.53)) have the same form whatever the sign of λ. Then, from
Eq.(12.53) of [16], Eq.(24), can be expressed as

dLnr−1dL
n
r+2[r] = sn−rλ (ρ)dLrr−1dL

r+2
r[0] dL

n
r+2[0]. (25)

Finally, substituting Eq.(23) and Eq.(25) in Eq.(17), having in mind that∫
dLnr+2[r] =

On−r−1On−r−2

O1O0

, (26)

we obtain the result. �

Remark. For λ = 0, Eq.(21) coincides, up to a constant factor, with
Eq.(18) of [10].

6



3.1. Morse representations for Mr

In this section a geometric interpretation is given of Eq.(21) in terms of
the critical points of height functions. In particular, and in order to simplify,
we will give a geometric interpretation of the function

βr =

∫
χ((Q ∩ Lnr+1[0]) ∩ Lr+1

r )sn−r−1λ (ρ)dLr+1
r . (27)

The density dLr+1
r may be decomposed as follows,

dLr+1
r = crλ(ρ)dρ dur, (28)

where dur denotes the surface area element of the r−dimensional unit sphere
and cλ(ρ) = d

dρ
sλ(ρ). Note that ρ ≥ 0 for the cases λ = 0 (Euclidean) and

λ < 0 (hyperbolic); however, for the case λ > 0 (spherical) ρ varies from
0 (which corresponds to the point O) to π√

λ
(which corresponds to the cut

locus of O (i.e., the antipodal point of O).
Therefore, for the cases λ = 0 (Euclidean) and λ < 0 (hyperbolic), we

may write,

βr =

∫
Sr

dur

∫ ∞
0

sn−r−1λ (ρ) crλ(ρ)χ((Q ∩ Lnr+1[0]) ∩ Lr+1
r )dρ, (29)

whereas, for the case λ > 0 (spherical),

βr =

∫
Sr

dur

∫ π√
λ

0

sn−r−1λ (ρ) crλ(ρ)χ((Q ∩ Lnr+1[0]) ∩ Lr+1
r )dρ, (30)

where Lr+1
r is the r−plane expressed in terms of its distance ρ from the fixed

point O, perpendicular to the geodesic defined from the direction ur from O,
and χ((Q ∩ Lnr+1[0]) ∩ Lr+1

r ) = 0 whenever (Q ∩ Lnr+1[0]) ∩ Lr+1
r = ∅.

Since we want to give a geometrical interpretation of βr, based on critical
points of height functions, from now on we will consider that ρ means signed
distance and we will rewrite βr as:

βr =
1

2

∫
Sr

dur

∫ ∞
−∞

sn−r−1λ (|ρ|) crλ(ρ)χ((Q∩Lnr+1[0])∩Lr+1
r )dρ, λ ≤ 0; (31)

βr =
1

2

∫
Sr

dur

∫ π√
λ

−π√
λ

sn−r−1λ (|ρ|) crλ(ρ)χ((Q∩Lnr+1[0])∩Lr+1
r )dρ λ > 0. (32)
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Let ur denote a unit vector in Sr ⊂ TOL
n
r+1[0]. The geodesic γur : R −→

Lnr+1[0], with γur(0) = O and γ′(0) = ur is given by γur(t) = cλ(t)O+ sλ(t)ur,

where cλ(t) = d
dt
sλ(t). Given ur, let hur : Lnr+1[0] −→ R be the height func-

tion whose level hypersurfaces are just the r−planes Lr+1
r perpendicular to

the geodesic γur(t). Note that in the Euclidean case (λ = 0) this height
function coincides with the standard height function considered in [19]. We
suppose that the level hypersurface Lr+1

r is oriented in such a way that the
unit vector ν(p), perpendicular to the level set Lr+1

r ⊂ Lnr+1[0] at p is given

by ν(p) = grad(hur)(p)/||grad(hur)(p)||.

Let us denote Qr+1 = Q ∩ Lnr+1[0] which is, in general, a domain with

boundary in Lnr+1[0] (see Appendix A of [10]). In Section 5 (Appendix) we
show that in Euclidean and hyperbolic cases; and in the spherical case, if the
domain Q is contained in the hemisphere of Mn

λ with pole O, hur |Qr+1 is a
strong Morse function for almost all ur ∈ Sr, it means that all of the critical
points in the direction ur from O are non-degenerate, and no two of them lie
on the same level hypersurface (i.e. they have different critical values). In
particular, hur |Qr+1 has not critical points in Qr+1. Let pi ∈ Crit(hur |∂Qr+1),
i = 1, . . . ,m, be the set of critical points, and

ρ1 < ρ2 < · · · < ρm, (with
−π
2
√
λ
≤ ρ1, ρm ≤

π

2
√
λ

for λ > 0)

the corresponding critical values (hur(pi) = ρi). To each critical point pi we
assign an index

εi = χ(Qr+1 ∩ Lr+1
r (ρi − ε))− χ(Qr+1 ∩ Lr+1

r (ρi + ε)), (33)

where Lr+1
r (ρi + ε) denotes the r−plane defined from the direction ur at a

signed distance ρi + ε from O; and ε is small enough to ensure that there
are no critical points of Crit(hur |∂Qr+1) whose height function belongs to
(ρi − ε, ρi + ε).

For r < n ∈ {1, 2, . . . }, define:

In−r−1,r(ρ) =

∫
sn−r−1λ (|ρ|) crλ(ρ) dρ

=

{ ∫
sn−r−1λ (ρ) crλ(ρ) dρ, ρ ≥ 0,

(−1)n−r−1
∫
sn−r−1λ (ρ) crλ(ρ) dρ, ρ < 0.

(34)
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Then, for λ = 0,

In−r−1,r(ρ) =

∫
|ρ|n−r−1 dρ =

{
ρn−r

n−r , ρ ≥ 0,

(−1)n−r−1 ρ
n−r

n−r , ρ < 0.
(35)

For λ 6= 0, and for any given pair (n, r), the integral In−r−1,r(ρ) may be
evaluated explicitly from [13], pages 114 and 159, or with the aid of a math-
ematical software package such as Mathematicar.

Theorem 3.2. Let O be a point in Mn
λ and Q ⊂ Mn

λ a compact domain
which is contained in the hemisphere of Mn

λ with pole O when λ > 0. Let
Qr+1 = Q ∩ Lnr+1[0] be the domain with boundary in Lnr+1[0]. Then, for r ∈
{0, 1, . . . , n− 2},

βr =
1

2

∫
Sr

(
m∑
k=1

εk In−r−1,r(ρk)

)
dur, (36)

where m represents the number of points Crit(hur |∂Qr+1) corresponding to the
direction ur.

Proof. The fact that Qr+1 will be a domain with boundary in Lnr+1[0], for

a generic (r + 1)−space Lnr+1[0], follows from Theorem A.1 of [10], and the

fact that hur |Qr+1 will in general be a strong Morse function for almost all
ur ∈ Sr follows from the appendix, having in mind that Qr+1 is contained in
the hemisphere of Lnr+1[0] with pole O.

Then Eq.(31) and Eq.(32) may be written as follows,

βr =
1

2

∫
Sr

dur

m−1∑
k=1

∫ ρk+1

ρk

sn−r−1λ (|ρ|) crλ(ρ)χ((Q ∩ Lnr+1[0]) ∩ Lr+1
r )dρ, (37)

Thus,

βr =
1

2

∫
Sr

dur

m−1∑
k=1

(In−r−1,r(ρk+1)− In−r−1,r(ρk))
m∑

j=k+1

εj

=
1

2

∫
Sr

(
m∑
k=2

εk In−r−1,r(ρk)− In−r−1,r(ρ1)
m∑
k=2

εk

)
dur.

(38)
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Finally, since
m∑
k=1

εk = 0, it means
m∑
k=2

εk = −ε1, and the proposed result is

obtained. �

4. Applications

Let Q ⊂ M3
λ (λ 6= 0) be a compact domain with smooth boundary S =

∂Q; then, from Theorem 2.1 with n = 3 and r = 1, we have

2πχ(S)−
∫
S

K(x)dx =
2λ

π

∫
L
χ(Q ∩ L3

1)dL
3
1, (39)

where K(x) is the Gauss curvature of S at x, and χ denotes Euler charac-
teristic.
Now, from Eq.(23) and the definition of β1 (Eq.(27)), a rotational formula of
the defect of the surface in M3(λ) is gven by

2πχ(S)−
∫
S

K(x)dx =
2λ

π

∫
Q∩L3

2[0]
6=∅
β1(Q ∩ L3

2[0])dL
3
2[0], (40)

where, using Theorem 3.2,

β1(Q ∩ L3
2[0]) =

1

2

∫
S2∩L3

2[0]

m∑
k=1

εk I1,1(ρk)du. (41)

Example. Let S be a geodesic sphere of radius ρ centered at O in M3(λ);
then, χ(S) = 2, and

∫
M2 K(x)dx = 4πc2λ(ρ).

On the other hand, S ∩ L3
2[0] is a geodesic circle (boundary of a geodesic

ball) in L3
2[0]; that is, all the points in S ∩ L3

2[0] are a distance ρ apart from

O. Then, for all directions u ∈ S1, m = 2, ε1 = 1, ε2 = −1, I1,1(ρ1) =
I1,1(ρ) = 1

2
s2λ(ρ) and I1,1(ρ2) = I1,1(−ρ) = −1

2
s2λ(ρ), β1(S ∩ L3

2[0]) = πs2λ(ρ);

and Eq.(40) is satisfied.

If we consider a domain Q in R3 (λ = 0), Corollary 2.2, with r = 1 and
n = 3, coincides with Eq.(12) of [6], Theorem 2.1 coincides with Eq.(12) of
[6], and, since

2χ(Q2 ∩ L2
1) = N(∂Q2 ∩ L2

1), (42)

10



whereN denotes number, Theorem 3.2 coincides with the integrand of Eq.(50)
in [6]; but now, for each axial direction u ∈ [0, 2π) in the pivotal plane L3

2[0],
the pivotal section is scanned entirely from top to bottom by a sweeping
straight line parallel to the axis Ou, in search of critical points.

5. Appendix

Let X be a smooth manifold with boundary. We say that a smooth
function f : X → R is a strong Morse function if

1. all critical points of f : X → R are non-degenerate and are contained
in the interior of X,

2. all critical points of the restriction f : ∂X → R are also non-degenerate,

3. if x, y ∈ X are distinct critical points of either f : X → R or f : ∂X →
R, then f(x) 6= f(y).

5.1. Preliminary results for the Euclidean case (λ = 0)

Assume now that X ⊂ Rn is a submanifold with boundary and for each
unit vector v ∈ Sn−1, let us denote by hv : X → R the height function defined
as hv(x) = 〈x, v〉.

Theorem 5.1. Let X ⊂ Rn be a compact submanifold with boundary. For
almost any v ∈ Sn−1, hv : X → R is a strong Morse function.

Proof. We consider S = X or S = ∂X which are compact spaces in Rn.
From Theorem 3 of [14], since (1, p) is in the nice range for all p = dim(S),
the linear map ha : S → R given by ha(x) =

∑
i aixi is stable for almost any

a ∈ Rn \ {0}.
Let W ⊂ Rn \ {0} be the set of points a such that ha : S → R is not

stable. Since W is a null set in Rn \ {0}, p(W ) is a null set in Sn−1, where
p : Rn\{0} → Sn−1 is the normalization map. Then, for any v ∈ Sn−1\p(W ),
hv : S → R is stable.

In the case of functions, it is well known that stability is equivalent to
that all critical points are non-degenerate with distinct critical values (see
[4]). Therefore hv : X → R and hv : ∂X → R are Morse functions with
distinct critical values for almost any v ∈ Sn−1. Since hv : X → R has not
critical points, critical values of hv : ∂X → R cannot coincide with critical
values of hv : X → R. Then, hv : X → R is a strong Morse function for
almost any v ∈ Sn−1. �
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Corollary 5.2. Let Q ⊂ Rn be a compact domain with boundary. For almost
any v ∈ Sn−1, hv : Q→ R is a strong Morse function.

5.2. General case Mn
λ (λ 6= 0)

Lemma 5.3. Let X ⊂ Mn
λ be a submanifold and let ψ : I → R be a diffeo-

morphism, where I is an open interval in R. If f : X → I is a strong Morse
function, then g := ψ ◦ f is a strong Morse function.

Proof. Since ψ is a diffeomorphism and f is a strong Morse function, it is
deduced that g is also a strong Morse function. Note that the critical points
of f coincide with the critical points of g. �

Let Q ⊂Mn
λ be a compact domain with boundary, O ∈Mn

λ and v denote
a unit vector in Sn−1 ⊂ TOQ. The geodesic γv : I ⊂ R → Q is given by
γv = cλ(t)O + sλ(t)v, where I =]− π√

λ
, π√

λ
[ for λ > 0 and I = R for λ < 0.

Then, given v, let hv : Q ⊂Mn
λ → R be the height function in Mn

λ , whose
level hypersurfaces are perpendicular to the geodesic γv.

Theorem 5.4. Let Q ⊂Mn
λ be a compact domain with boundary which, for

λ > 0, it is contained in the hemisphere of Mn
λ with pole O. Then, for almost

any v ∈ Sn−1, hv : Q→ R is a strong Morse function.

Proof. It is useful to consider the embedding of the space form Mn
λ into

(Rn+1, 〈·, ·〉λ) as follows:
x0 = 1, λ = 0,

x20 + x21 + . . .+ x2n = 1
λ
, λ > 0,

−x20 + x21 + . . .+ x2n = 1
λ
, x0 > 0, λ < 0,

(43)

where (x0, x1, . . . , xn) denote the coordinates of a point in Rn+1, and 〈·, ·〉λ
is the appropriate metric to the embedding, which depends on the sign of λ.

Using this embedding, Q ⊂ Mn
λ ⊂ Rn+1 can be considered as a compact

submanifold with boundary in Rn+1. Then, the height function of Rn+1 with
respect to the direction v, restricted to Q is:

12



hR
n+1

v,λ : Q −→ R (44)

x −→ 〈x, v〉λ

From Theorem 5.1, hR
n+1

v,λ is a strong Morse function for almost any

v ∈ Sn−1+ . Moreover, we note hR
n+1

v,λ (Q) ⊂ I.

Since 〈v,O〉λ = 0, we have that,

hR
n+1

v,λ (γv(ρ)) = 〈γv(ρ), v〉λ = sλ(ρ) =

{
λ−1/2 sin(ρ

√
λ), λ > 0,

|λ|−1/2 sinh(ρ
√
|λ|), λ < 0.

(45)

Eq.(45) gives a relation between the height function hv(γv(ρ)) = ρ of Q
in Mn

λ and the height function hR
n+1

v,λ of Q in Rn+1. That is,

hv(x) = ψ(hR
n+1

v,λ (x)) =

{
1√
λ

arcsin(
√
λhR

n+1

v,λ (x)), λ > 0,
1√
−λarcsinh(

√
−λhRn+1

v,λ (x)), λ < 0.
(46)

Finally, since Q is contained in the hemisphere of Mn
λ with pole O for

λ > 0, we have that ψ is a diffeomorphism from I to R when I =]− π√
λ
, π√

λ
[

for λ > 0 and when I = R for λ < 0; therefore from Lemma 5.3 we obtain
the result. �
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