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Resumen

El modelo function passing proporciona un soporte mas directo sobre el cual construir siste-
mas distribuidos orientados a datos. En resumen, construye una estructura de datos funcional y
persistente que representa transformaciones en datos immutables y distribuidos pasando funcio-
nes serializables y bien tipadas entre distintos nodos y aplicandolas sobre datos immutables. De
esta manera, el disefio del modelo simplifica la tolerancia a fallos—Ilos datos se pueden recupe-
rar aplicando otra vez las funciones sobre los datos originarios guardados en memoria. Técnicas
como la evaluacién diferida son centrales en el modelo, haciéndolo eficiente y facil de entender,
y evaluandolo sélo en el punto en el que una comunicacién en la red comienza.

Este proyecto provee un resumen de la implementacién de tal modelo en Scala, discutiendo
importantes mejores requeridas en dos complejas extensiones del compilador de Scala: Scala
Pickling y Spores, asi como lo requerido para aunar ambos proyectos de una forma éptima. El
presente trabajo permite una miriada de nuevas oportunidades para construir sistemas distri-
buidos orientados a datos; ya no solo sistemas como Apache Spark, aunque puede ser visto como
el caso de uso tipico para este modelo. Mientras el modelo est6 disenado para ser agndstico de
la plataforma (estd implementado en Scala y se ejecuta sobre la JVM), puede interoperar con
otros lenguajes de programacién como Javascript mediante Scala.js, un plugin del compilador de
Scala que permite a cualquier framework basado en Javascript beneficiarse de esta contribucién.
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Resumen extendido

Los frameworks con maés éxito para el procesamiento de big data han adoptado APIs fun-
cionales. Sin embargo, sus implementaciones estan construidas sobre tecnologias poco tipadas,
basadas en un paradigma imperativo, que complican el diseno e implementacién de propie-
dades clave en los sistemas distribuidos como la tolerancia a fallos. Consecuentemente, estas
plataformas se enfrentan a los siguientes problemas:

1. Dificultad de uso. Los sistemas no pueden prevenir estaticamente el mal uso de ciertos
host language features (del lenguaje de programacién utilizado) que no han sido pensadas
para un paradigma distribuido. Por consiguiente, esto produce errores en tiempo de eje-
cucion muy dificiles de depurar y solucionar. Un claro ejemplo es la serializacion de unsafe
closures (funciones que no estén tipadas y son distribuidas a otros nodos).

2. Complejo mantenimiento. Contrariamente a las APIs, las capas de implementacién de
menor nivel no estan estaticamente tipadas y las tareas de mantenimiento y refactoring,
claves para la calidad y futuro del producto, se hacen mucho mas dificiles.

3. Pérdida de oportunidades de optimizacion. La ausencia de informacién estatica
sobre los tipos impide al compilador realizar optimizaciones clave sobre el cédigo emitido.
Por ejemplo, la garantia de crear c6digo concreto para serializar objetos de cualquier
tipo en tiempo de compilacién es crucial, pues evita el uso de serializacién en tiempo
de ejecucion, la cual es ineficiente y produce una sobrecarga del sistema, especialmente
aquellos en tiempo real. Este hecho ha obligado a muchas plataformas que se ejecutan
sobre la JVM a optar por otras alternativas como Avro, Protocol Buffers or Kryo, puesto
que la serializacién estandar implementada en Java es notablemente ineficiente.

El modelo function passing proporciona un soporte mas directo sobre el cual construir siste-
mas distribuidos orientados a datos. En resumen, construye una estructura de datos funcional y
persistente que representa transformaciones en datos immutables y distribuidos pasando funcio-
nes serializables y bien tipadas entre distintos nodos y aplicandolas sobre datos immutables. De
esta manera, el diseno del modelo simplifica la tolerancia a fallos—Ilos datos se pueden recupe-
rar aplicando otra vez las funciones sobre los datos originarios guardados en memoria. Técnicas
como la evaluacion diferida son centrales en el modelo, haciéndolo eficiente y facil de entender,
y evaluandolo sélo en el punto en el que una comunicacién en la red comienza. Su diseno se
centra en evitar los problemas descritos anteriormente y proveer al programador de un soporte
mas intuitivo para la construccién de sistemas distribuidos.

El trabajo aqui expuesto se basa en dos lineas de investigacion anteriores: generacién de codi-
go para serializar de una forma eficiente y esporas tipadas, closures que pueden ser serializables
sin perder informacion estatica sobre sus tipos.

El modelo extiende la programacion monadica al envio y recepcién de datos entre redes de
ordenadores. Es, de hecho, un modelo dual a la programacién basada en actores (actor model),
con la salvedad de que en esta ocasion mantenemos los datos estacionados y los transforma-
mos enviando la funcionalidad a los hosts que los almacenan, en lugar de enviar los datos e
implementar la légica de negocio en los actores.



En general, el model function-passing trae conjuntamente inmutabilidad, estructuras de
datos persistentes, funciones mondadicas de alto orden, fuerte estatico tipado y lazy evaluation,
siendo éste ultimo el mas importante de todos, puesto que sin él el modelo presentado seria
ineficiente en ambos tiempo y memoria. Las garantias de tolerancia a fallos estan basadas en el
concepto de lineage, que utiliza un DAG (grafo aciclico dirigido) para representar la secuencia de
transformaciones a partir de unos datos iniciales (concepto inspirado por Resilient Distributed
Datasets, también conocidos como RDDs). Asi, en caso de algin fallo, la informacién puede
volverse a computar recorriendo el grafo y aplicando secuencialmente las transformaciones.
Este concepto esta siendo utilizado en produccion por sistemas como Apache Spark, Twitter’s
Scalding, Scoobi, Dryad and Hadoop MapReduce. Conjuntamente, para asegurar la recepcién
de mensajes entre los nodos, se utiliza el algoritmo Reply-ACK y otros algoritmos orientados a
proporcionar un sistema tolerante a fallos embebido en el mismo diseno.

Esta proyecto provee un resumen de la implementacién de tal modelo en Scala, discutiendo
importantes mejores requeridas en dos complejas extensiones del compilador de Scala: Scala
Pickling y Spores, asi como lo requerido para aunar ambos proyectos de una forma optima. El
presente trabajo permite una miriada de nuevas oportunidades para construir sistemas distri-
buidos orientados a datos; ya no solo sistemas como Apache Spark, aunque puede ser visto como
el caso de uso tipico para este modelo. Mientras el modelo esta diseiado para ser agnostico de
la plataforma (estd implementado en Scala y se ejecuta sobre la JVM), puede interoperar con
otros lenguajes de programacién como Javascript mediante Scala.js, un plugin del compilador de
Scala que permite a cualquier framework basado en Javascript beneficiarse de esta contribucién.

El proyecto ha sido llevado a cabo en el LAMP (Laboratorio de Métodos de Programacién),
situado en la EPFL (Escuela Politécnica Federal de Lausanne, Suiza) y supervisado por Heat-
her Miller (doctora e investigadora) y Martin Odersky (catedratico y creador del lenguaje de
programacién Scala). El modelo presentado estd disenado para ser adoptado por lenguajes y
sistemas del mundo real. Asi pues, este proyecto consiste en la implementacién de tal sistema
por y para Scala, que ya es el lenguaje host de alguna de las plataformas mencionadas, asi como
aportes y mejoras tedricas al modelo. A continuacién, se presenta el contenido de la memoria,
que esta escrito en inglés.
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Abstract

Computer Science School
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On the design and implementation of a purely functional
programming model for distributed systems and big data
processing

by Jorge VICENTE CANTERO

The function passing model provides a more principled substrate on which
to build data-centric distributed systems. In a nutshell, it builds up a per-
sistent functional data structure representing transformations on distributed
immutable data by passing well-typed serializable functions over the wire and
applying them to this distributed data. Thus, the model simplifies failure re-
covery by design—data is recovered by replaying function applications atop
immutable data loaded from stable storage. Deferred evaluation is central to
the model and makes it efficient and easy to reason about by incorporating
it only at the point of initiating network communication.

This thesis provides an overview of its implementation in Scala, discussing
important improvements required in two non-trivial Scala compiler exten-
sions as open source frameworks: Scala Pickling and Spores, as well as what’s
required to provide an optimal binding between the two. The present work
enables a myriad of new opportunities to build fault-tolerant data-centric
distributed systems, not just systems like Apache Spark alone, although it
can be viewed as the canonical use case for the function passing model.
While the model is designed to be platform-agnostic, it is implemented in
Scala and runs on the JVM, interoperating with other programming lan-
guages like JavaScript through Scala.js, a Scala compiler plugin that allows
full-stack JavaScript applications to also benefit from this contribution.
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Chapter 1

Introduction

1.1 Context and Motivation

1.1.1 Data-centric Programming

State-of-the-art software for distributed data processing is essential in mod-
ern societies. While these frameworks take care of the storage, partition
and analysis of this data, developers interact with them to perform concrete
business-related tasks, dealing only with transformations over data and for-
getting about the nitty-gritty details of these complex systems. This way of
thinking gave birth to data-centric programming, a recent movement that is
rapidly growing in importance.

With it, it can be observed that most successful systems for programming
with “big data” have adopted ideas from functional programming; i.e. pro-
gramming with first-class functions and higher-order functions. These func-
tional ideas are often touted to be the key to the success of these frameworks.
Authors and users alike claim that a functional, declarative interface to data
distributed over tens to thousands of nodes provides a more natural way for
users as diverse as distributed systems engineers to data scientists to reason
about data.

Popular implementations of the MapReduce (Dean and Ghemawat, 2008)
model, such as Hadoop MapReduce (Apache, 2015b) for Java, have been
developed without making use of functional language features such as clo-
sures. In recent years, a new generation of distributed systems for large-scale
data processing have suddenly cropped up, using emerging functional lan-
guages like Scala; such systems include Apache Spark (Zaharia et al., 2012),
Twitter’s Scalding (Twitter, 2015), and Scoobi (NICTA, 2015) and make
use of functional language features in Scala in order to provide high-level,
declarative APIs to end-users. Also, the benefits provided by functional pro-
gramming have also won over framework designers as well—some have no-
ticed that immutability, and data transformation via higher-order functions
makes it much easier, by design, to tackle concerns central to distributed
systems.

1.1.2 Disadvantages of the State of the Art

These frameworks greatly benefit from these ideas, since they foster a fric-
tionless interaction with end-users.
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However, the frameworks’ internals still leverage imperative programming
and build atop of tall stack of untyped code, losing the benefits enjoyed
by the users of their high-level APIs. These design decisions come at great
expense. Suddenly, key concerns like correctness, fault tolerance and con-
currency become blurred, difficult to reason about and realize in practice.
Further, as distributed systems are an intrinsic source of runtime errors,' the
untyped low-level layers cannot statically prevent common usage errors and
provide rich error reports. As a result, users are confronted with hard-to-
debug errors whose cause is unknown beforehand. Consequently, the original
strategy of these frameworks backfires and greatly impacts ease-of-use.

Yet, end-users are not the only ones affected. Other problems manifest
themselves in areas like maintenance and performance due to the absence of
types. Developers, who have to deal with these issues, experience slowdowns
in day-to-day tasks like code reviews and refactorings, that could potentially
introduce new, hidden misbehaviours.? Also, performance is difficult to im-
prove because the compiler cannot apply type-specific optimizations, like the
elimination of the boxing and unboxing techniques performed by the JVM,?
and serialization techniques cannot use type-specific serialization code, thus
exclusively relying on reflection-based tools, which are slow and problematic
in the long term.

In conclusion, the aforementioned issues affect both end-users and devel-
opers. Their effects skyrocket in large codebases and hurt the desired user
experience. Sooner or later, developers not only struggle to introduce new
features but suffer to maintain them.

As these large-scale data processing and distributed applications continue
to grow in importance, what can we as language designers and software
developers do to make it easier for more of these frameworks to rise? Are
these pitfalls inherent to the nature of such systems? Or, conversely, can we
do better?

1.2 A New Solution

Looking at the root of the problem, one may find that untyped, imperative
code is an aftermath of proper support for distributed use cases; missing
language features that force the users to roll their own ways to develop these
distributed frameworks, and end up in large unmantainable codebases.

There is no doubt that, whereas modern programming languages are trying
to keep up, very few of them have been designed with distributed program-
ming in mind. In addition, such support is particularly hard to get right—mnot
only basic features need to be provided, users expect more advanced features

!Existing distributed systems range accross different use cases and scenarios. However,
their distributed nature rely on error-prone tasks like connection accross networks and
data serialization.

2Note that conventional test suites are not enough to test the correct functioning of
distributed systems. The space of cases to test increase abruptly and the overall behaviour
is nondeterministic and, therefore, difficult to predict.

3For a full of explanation of these optimizations, see (Dragos, 2010), which thoroughly
describes these techniques in and for the Scala programming language.
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to work as well. Striking a balance in such a task is difficult and requires an
in-depth consideration.

This sudden proliferation of new frameworks for distributed data-centric pro-
gramming concurrent with the sudden growth in popularity of an emerging
programming language begs the question: has it been our programming lan-
guages that have limited us? Could it be that the primitives we build our
systems upon are too low-level, causing us to struggle to reinvent the same
tricky wheel over and over again?

To answer that question, (Miller et al., 2016) previously proposed a new
programming model called the function passing model which has been de-
signed to be a more principled substrate (or middleware) upon which to
build data-centric distributed systems. It can be viewed as a generalization
of the MapReduce/Spark programming model—though it is not limited to
the MapReduce/Spark programming model alone.

The function-passing model would allow any distributed system to become
a reality, regardless of its type, size and location. The model is generic and
transparent; it does not have any assumption or constraint on the myriad of
possibilities that enables, from systems that need to scale out® to those that
scale in°. These decisions boil down to the users’ needs, whereas the rest is
taken care of by the network backend.

This interesting idea came along with an initial proof of concept, built atop
of Akka (Typesafe, 2015). Unfortunately, its primary goal was not to work
correctly, only to prove that such model was indeed realizable. To name a
few of the disadvantages: it lacked implementation for the most important
primitives, it had rudimentary support for fault-tolerance techniques, seri-
alization relied on flaky versions of Scala Pickling, efficiency was seriously
damaged by the overhead of Akka and only a very constrained subset of
spores (safe closures) could be sent over the wire. As a result, real-world
applications weren’t able to benefit from it, and its existence was ignored.

In an attempt to turn around this situation, the goal of this thesis is to
make the function-passing programming model happen, therefore improving
the language support for distributed applications in Scala. Hence, along
this document, I expose the different approaches to achieve a fully-working
efficient implementation, ready to be adopted by industry or, at least, set a
starting point towards better distributed frameworks built atop of Scala.

1.3 Goals and Contributions

The function-passing implementation circumscribes important improvements
in two non-trivial Scala compiler extensions as open source frameworks:

“Horizontal scalability is the process of adding or removing nodes to a distributed
software application. These nodes can be both in local or remote networks.

SVertical scalability is the process of adding or removing computing resources to a single
node in a distributed system
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TABLE 1.1: The contributed lines of code to Spores, Scala
Pickling and the new function-passing implementation.

Lines Spores Scala Pickling Function-passing Total
New 1,167 ++ 13,166 ++ 7,423 ++ 21,756 ++
Removed 1,045 —— 12270 —— -7,146 —— 20,461 ——

Scala Pickling and Spores, as well as what’s required to provide an opti-
mal binding between the two. While the model is designed to be platform-
agnostic, it is implemented in Scala,’ runs on the JVM and it interoperates
with other programming languages like JavaScript through Scala.js, a Scala
compiler plugin that allows full-stack JavaScript applications to also benefit
from this contribution. In short, this thesis contributes:

e A distributed implementation of the programming model in
Scala, available for the JVM and with support for JavaScript plat-
forms, that is simple, modular, efficient and backend independent.
This production-ready implementation has allowed us to build popular
frameworks like Spark and MBrace (Dzik et al., 2013), and end-user
applications we have built using each of these prototype frameworks.
The design and use of these are, however, not included in this thesis.

e A concrete analysis of the requirements for an efficient im-
plementation of our programming model, as well as a discussion
of our improvements in Scala Pickling (Miller et al., 2013) and Spores
(Miller, Haller, and Odersky, 2014) for enabling an efficient implemen-
tation. Efficiently serializing safe closures is a fundamental problem
and the cornerstone of uniting functional programming and distributed
computing. Despite using Scala, the solutions that we propose are
language-independent and can be replicated in other functional pro-
gramming languages.

e Theoretical contributions to the original paper that explain sev-
eral ways to share SiloRefs among different nodes and approach the
problem of memory reclamation and fault tolerance. Such contribu-
tions have been published in the official function-passing paper (Miller
et al., 2016).7

The above contributions are quantified in Table 1.1, according to Github,
and shows the overall amount of contributed lines of code. It is of particular
interest the relation between the new and removed lines of code. While a lot
of functionality has been incorporated in the three projects, significant parts
have also been refactored and generalised, encouraging code reusability and
improving the overall quality.

5Scala is the host language of some of the important distributed big-data frameworks,
such as Apache Spark (Zaharia et al., 2012)

"Note that the contents of these thesis have been published by Jorge Vicente Cantero
in (Cantero, Miller, and Haller, 2016), a paper that is under submission to ECOOP 2016.
Arguably, one of the main objectives of this thesis was to introduce the student to real-
world research and, as such, this is the result.


https://github.com

1.4. Structure and Organization of the Thesis 5

1.4 Structure and Organization of the Thesis

The rest of this thesis is organized as follows. We begin in Chapter 2 with a
general overview of the function-passing model and how it works in theory.
Further, in Chapter 3 we analyse its requirements and take a close look to
the required organisation to realize its implementation, along with a detailed
project schedule. Later, Chapter 4 delves into the function-passing imple-
mentation, bringing everything together and describing its design. Since this
thesis’s contributions relate directly to intricacies derived from the interac-
tion of other non-trivial frameworks, it first starts with a few background
sections.

In Section 4.2.1, we give an introduction to Scala Pickling, an automatic and
performant serialization framework which the function passing framework
makes heavy use of. In Section 4.2.2 we give an introduction to Scala Spores,
a framework for ensuring that closures are guaranteed to be serializable. We
get to the meat of our contributions in Section 4.3 by detailing the myriad
ways we improved the Scala Pickling framework. Conversely, Section 4.4
details the ways in which we improved the Scala Spores framework. We
tie everything together and show how to pickle spores in Section 4.5. And
finally, we conclude in Chapter 5.

For readers unfamiliar with Scala and their key language features, we refer
them to the appendices. Appendix A introduces implicits in Scala, a lan-
guage feature that is central to each of these frameworks, and Appendix B
introduces macros, a compile-time metaprogramming technique in Scala that
is the main underlying component of the implementation of Scala Pickling
and Spores.






Chapter 2

The Function-passing Model

2.1 The Essence

The key idea behind the function passing model is to keep distributed (im-
mutable) data stationary, and to instead send functionality as function clo-
sures over the network. This enables two important benefits for distributed
system builders; (a) since all computations are functional transformations on
immutable data, fault-tolerance is made simple by design, and (b) commu-
nication is made well-typed by design, a common pain point for builders of
distributed systems in Scala. Said another way, the function passing model
attempts to more naturally model the paradigm of data-centric programming
by extending monadic programming to the network.

On this note, one might observe that the function passing model can actually
be interpreted as somewhat of a dual to the actor model; rather than keeping
functionality stationary and sending data, the model keeps data stationary
and send functionality to the data. This idea is exemplified in figures 2.1
and 2.2.

_allhox

FIGURE 2.1: The Actor model.
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FIGURE 2.2: The Function-Passing model.

The function passing model brings together immutable, persistent data struc-
tures, monadic higher-order functions, strong static typing, and deferred
evaluation—ypillars of functional programming—to provide a more type-safe,
and easy to reason about foundation upon which to build data-centric dis-
tributed systems. Further, it provides a precise specification of the semantics
of functional fault recovery.

In the broadest sense, the function passing model can be thought of as a
sort of persistent functional data structure with structural sharing. How-
ever, rather than containing pure data, instead the data structure repre-
sents a directed acyclic graph (DAG) of functional transformations on dis-
tributed data. The root node of is immutable data read from stable storage
(e.g. Amazon S3); edges represent functional transformations on immutable
data represented as nodes of the DAG.

Importantly, since this DAG of computations is a persistent data structure
itself, it is safe to exchange (copies of) subgraphs of a DAG between remote
nodes. This enables a robust and easy-to-reason-about model of fault tol-
erance. Subgraphs of the DAG are called lineages; lineages enable restoring
the data of failed nodes through re-applying the transformations represented
by their DAG. This sequence of applications must begin with data available
from stable storage.

Central to the function passing model is the careful use of deferred evalua-
tion. Computations on distributed data are typically not executed eagerly;
instead, applying a function to distributed data just creates an immutable
lineage. To make a network call and thus obtain the result of a computa-
tion, it is necessary to first “kick off” computation, or to force its lineage.
Within the programming model, this force operation (called send()) makes
network communication (and thus possibilities for latency) explicit, which
is considered to be a strength when designing distributed systems (Waldo
et al., 1996). Deferred evaluation also enables optimizing distributed compu-
tations through operation fusion, which avoids the creation of unnecessary
intermediate data structures—this is efficient in time as well as space. This
kind of optimization is particularly important and effective in distributed
systems (Chambers et al., 2010).
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2.1.1 Basic introduction to functional programming

Functional programming is a programming paradigm—a style of building
the structure and elements of computer programs—that treats computation
as the evaluation of mathematical functions and avoids changing-state and
mutable data (Wikipedia, 2016b).

The fundamental concept of functional programming is that of higher-order
functions. Given the background of this discipline, that comes from the
lambda calculus (Church, 1941), a mathematical abstraction for the de-
scription and evaluation of functions, functions are placed at its very core.
By convention, functional programming languages treat them as first-class
members and programs are written thanks to function composition. As we
will discuss later, they play an invaluable role in the function-passing model.
In addition, it also benefits from the following peculiarities of functional
programming.

Immutability and state. While mainstream software builds upon the
idea of mutable state, functional programmers dodge it. Instead, they rely
on immutability: once an element has been created, it cannot be changed.
As aresult, a new one is created and propagated through the whole program.
Intuitively, this approach that may sound inefficient but thanks to structural
sharing it becomes possible to use it in practice with almost no overhead.

Non-strict evaluation. Also known as lazy evaluation, it delays the eval-
uation of an expression until its value is required in the program. In practice,
this means that no initialization will occur at runtime but only at the first
call site. As an alternative to strict evaluation, it’s not meant to be a replace-
ment but a powerful evaluation technique that enables critical performance
improvements in concrete scenarios. In Scala, a variable can be initialized
lazily by adding the modifier lazy, whereas in other languages like Haskell
every expression is by default evaluated in a non-strict way by the compiler.

Fusion operation. A unique advantage of dealing with pure functions as
the most elemental logical part of a program is fusion operation. This tech-
nique allows us to merge any number of functions into one and improves the
overall performance of the program—a compiler is able to merge functions
and avoid object initialization overhead, a significant issue for languages like
Scala that represent functions as classes.

Monads. Scala, as a programming language that combines object-oriented
and functional programming, encourages developers to write pure functions.
Pure functions do not perform any side effect, they map values of different
types without altering a state or having an observable interaction with the
outside world. A typical instance of an effectful function is:

def sum(x: Int, y: Int) = §
val res = x + y
println(s"x + vy = fres3")
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res

3

In the above example, println is a side-effect, since it triggers an 10 effect
within a function that was supposed to map Int => Int. Although this is
a not recommended practice when programming in Scala, side effects are
at the core of any program and we cannot get rid of them. Yet, functional
programming provides a better way to deal with them, through the so-called
monad.

Formally, a monad is a mathematical structure that represents computations
as sequences of steps, a pipeline of computations from an input to an output.
In short, it can model computations and their combinations, even if they
contain side effects. This introductory explanation does not aim at giving
a full explanation of this abstraction—there are books devoted to the sole
monad abstraction—, but a general overview of what a monad is.

Mathematically, a monad is defined by two functions:
1. return, also known as unit.
2. join, also known as flatMap.

Monads abide by the so-called monad laws, which are not described in this
introduction. For readers interested in monads and their properties, we
refer them to (Wadler, 2010) that explains thoroughly their essence and
importance in functional programming.

Closures. Closures lexical closures or function closures) are a technique
for implementing lexically scoped name binding in languages with first-class
functions (Wikipedia, 2016a). A closure is composed of a function together
with an environment. An environment is defined as a mapping associating
each free variable of the function (variables that are used locally, but defined
in an enclosing scope) with the value or storage location to which the name
was bound when the closure was created. Closures allow the body of the
function to access those captured variables through the closure’s reference
to them, even when the function is invoked outside their scope.

2.1.2 The Function-Passing Model

The function passing model consists of three main components:

o Silos: stationary, typed, immutable data containers.
¢ SiloRefs: references to local or remote Silos.
e Spores: safe, serializable functions.

Silos A silo is a typed and immutable data container. It is stationary
in the sense that it does not move between machines—it remains on the
machine where it was created. Data stored in a silo is typically loaded from
stable storage, such as a distributed file system. A program operating on
data stored in a silo can only do so using a reference to the silo, a SiloRef.



2.1. The Essence 11
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FI1GURE 2.3: Basic function passing model.

SiloRefs Similar to a proxy object, a SiloRef represents, and allows in-
teracting with, both local and remote silos. SiloRefs are immutable, storing
identifiers to locate possibly remote silos. SiloRefs are also typed (SiloRef[T])
corresponding to the type of their silo’s data, leading to well-typed network
communication. The SiloRef provides three primitive operations/combina-
tors: map, flatMap, and send. The map method makes use of deferred eval-
uation; it applies a user-defined function to data pointed to by the SiloRef,
creating in a new silo containing the result of this application, though this
application is deferred. That is, this computation is only kicked off when
the send method is invoked. This makes it possible to queue up or stage
transformations in order to optimize network communication. Like map, the
application of flatMap is deferred. flatMap applies a user-defined function
to data pointed to by the SiloRef. Unlike map, however, the user-defined
function passed to flatMap returns a SiloRef whose contents are transferred
to the new silo returned by flatMap. Essentially, flatMap enables accessing
the contents of (local or remote) silos from within remote computations. I
illustrate these primitives in more detail in Section 2.1.4.
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2.1.3 Basic Usage

Let’s begin with a simple visual example to illustrate the basics of the func-
tion passing model.

The main handle users have to the framework is via SiloRefs. A SiloRef
can be thought of as an immutable handle to distributed data contained
within a corresponding silo. Users interact with this distributed data by
applying functions (as spores) to SiloRefs, which are transmitted over the
wire and later applied to the data within the corresponding silo. As it is the
case for persistent data structures, when a function is applied to a piece of
distributed data via a SiloRef, a SiloRef representing a new silo containing
the transformed data is returned.

The simplest illustration of the model is shown in Figure 2.3 (time flows
vertically from top to bottom). Here, we start with a SiloRef[T] which
points to a piece of remote data contained within a Silo[T]. When the
function shown as A of type T' = S is applied to SiloRef[T] and “forced”
(sent over the wire), a new SiloRef of type SiloRef[S] is immediately re-
turned. Note that SiloRef[S] contains a reference to its parent SiloRef,
SiloRef[T]. (This is how lineages are constructed.) Meanwhile, the func-
tion is asynchronously sent over the wire and is applied to Silo[T], eventu-
ally producing a new Silo[S] containing the data transformed by function
A. This new SiloRef[S] can be used even before its corresponding silo is
materialized (i.e. before the data in Silo[S] is computed) — the function
passing framework queues up operations applied to SiloRef[S] and applies
them when Silo[S] is fully materialized.

Different sorts of complex DAGs can be asynchronously built up in this
way. Though first, to see how this is possible, let’s develop a clearer idea
of the primitive operations available on SiloRefs and their semantics in the
following section.
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FIGURE 2.4: A simple lineage or DAG in the function pass-
ing model.
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2.1.4 Primitives

There are four basic primitive operations on SiloRefs that together can be
used to build the higher-order operations common to popular data-centric
distributed systems. In this section, I introduce these primitives in the
context of a running example. These primitives include:

e map
e flatMap
e send

e cache

map def map[S](s: Spore[T, S]): SiloRef[S]

The map method takes a spore that is to be applied to the data in the silo
associated with the given SiloRef. Rather than immediately sending the
spore across the network, and waiting for the operation to finish, the map
method’s evaluation is deferred. Without involving any network communica-
tion, it immediately returns a SiloRef referring to a new, soon-to-be-created
silo. This new SiloRef only contains lineage information, namely, a reference
to the original SiloRef, a reference to the argument spore, and the informa-
tion that it is the result of a map invocation. As explained below, another
method, send or cache, must be called explicitly to force the materialization
of the result silo.

To better understand how DAGs are created and how remote silos are ma-
terialized, I will develop a running example throughout this section. Given
a silo containing a list of Person records, the following application of map
defines a (not-yet-materialized) silo containing only the records of adults
(graphically shown in Figure 2.4, part 1):

val persons: SiloRef[List[Person]] = ...
val adults =
persons.map(spore § ps => ps.filter(p => p.age >= 18) 3)

flatMap def flatMap[S](s: Spore[T, SiloRef[S]]): SiloRef[S]

Like map, the flatMap method takes a spore that is to be applied to the
data in the silo of the given SiloRef. However, the crucial difference is in
the type of the spore argument whose result type is a SiloRef in this case.
Semantically, the new silo created by flatMap is defined to contain the data
of the silo that the user-defined spore returns. The flatMap combinator adds
expressiveness to the model that is essential to express more interesting
computation DAGs. For example, consider the problem of combining the
information contained in two different silos (potentially located on different
hosts). Suppose the information of a silo containing Vehicle records should
be enriched with other details only found in the adults silo. In the following,
flatMap is used to create a silo of (Person, Vehicle) pairs where the names
of person and vehicle owner match (graphically shown in Figure 2.4, part 2):

val vehicles: SiloRef[List[Vehicle]] = ...
// adults that own a vehicle
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val owners = adults.flatMap(spore §
val localVehicles = vehicles // spore header
ps =>
localVehicles.map(spore §
val localps = ps // spore header
vs =>
localps.flatMap(p =>
// list of (p, v) for a single person p
vs.flatMap §
v => if (v.owner.name == p.name) List((p, v)) else Nil

3

D)
)

Note that the spore passed to flatMap declares the capturing of the vehicles
SiloRef in its so-called “spore header.” The spore header spans all variable
definitions between the spore marker and the parameter list of the spore’s
closure. The spore header defines the variables that the spore’s closure is al-
lowed to access. Essentially, spores limit the free variables of their closure’s
body to the closure’s parameters and the variables declared in the spore’s
header. Within the spore’s closure, it is necessary to read the data of the
vehicles silo in addition to the ps list of Person records. This requires call-
ing map on localVehicles. However, map returns a SiloRef; thus, invoking
map on adults instead of flatMap would be impossible, since there would be
no way to get the data out of the silo returned by localVehicles.map(..).
With the use of flatMap, however, the call to localVehicles.map(..) cre-
ates the final result silo, whose data is then also contained in the silo returned
by flatMap.

Although the expressiveness of the flatMap combinator subsumes that of the
map combinator, keeping map as a (lightweight) primitive enables more oppor-
tunities for optimizing computation DAGs (e.g. operation fusion (Chambers
et al., 2010)).

send def send(): Future[T]

As mentioned earlier, the execution of computations built using SiloRefs is
deferred. The send operation forces the deferred computation defined by the
given SiloRef. Forcing is explicit in the model, because it requires sending
the lineage to the remote node on which the result silo should be created.
Given that network communication has a latency several orders of magnitude
greater than accessing a word in main memory, providing an explicit send
operation is a judicious choice (Waldo et al., 1996).

To enable materialization of remote silos to proceed concurrently, the send
operation immediately returns a future (Haller et al., 2012). This future is
then asynchronously completed with the data of the given silo. Since calling
send will materialize a silo and send its data to the current node, send
should only be called on silos with reasonably small data (for example, in the
implementation of an aggregate operation such as reduce on a distributed
collection).
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cache def cache(): Future[Unit]

The performance of typical data analytics jobs can be increased dramatically
by caching large data sets in memory (Zaharia et al., 2012). To do this, the
silo containing the computed data set needs to be materialized. So far, the
only way to materialize a silo shown is using the send primitive. However,
send additionally transfers the contents of a silo to the requesting node—too
much if a large remote data set should merely be cached in memory remotely.
Therefore, an additional primitive called cache is provided, which forces the
materialization of the given SiloRef, returning Future[Unit].

Given the running example so far, one can add another subgraph branching
off of adults, which sorts each Person by age, produces a String gretting,
and then “kicks-off” remote computation by calling cache and caching the
result in remote memory (graphically shown in Figure 2.4, part 3 and 4):

val sorted =

adults.map(spore { ps => ps.sortWith(p => p.age) %)
val labels =

sorted.map(spore { ps => ps.map(p => "Welcome, " + p.name) 3%)
labels.cache()

Assuming one would also cache the owners SiloRef from the previous ex-
ample, the resulting lineage graph would look as illustrated in Figure 2.4.
Note that vehicles is not a regular parent in the lineage of owners; it is an
indirect input used to compute owners by virtue of being captured by the
spore used to compute owners.

Creating Silos

Besides a type definition for SiloRef, the framework also provides a compan-
ion singleton object (Scala’s form of modules). The singleton object provides
factory methods for obtaining SiloRefs referring to silos populated with some
initial data:'

object SiloRef §
def fromTextFile(h: Host)(f: File): SiloRef[List[String]]
def fromFun[T](h: Host)(s: Spore[Unit, T]): SiloRef[T]
def fromLineage[T](h: Host)(s: SiloRef[T]): SiloRef[T]

3

Each of the factory methods has a h parameter that specifies the target host
(address/port) on which to create the silo. Note that the fromFun method
takes a spore closure as an argument to make sure it can be serialized and
sent to h. In each case, the returned SiloRef contains its host as well as a
host-unique identifier. The fromLineage method is particularly interesting
as it creates a copy of a previously existing silo based on the lineage of
a SiloRef s. Note that only the SiloRef is necessary for this operation to
successfully complete; the silo originally hosting s might already have failed.

'For clarity, only method signatures are shown. Please, also note that the below def-
inition is slightly simplified, and therefore does not match completely the current imple-
mentation.
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2.2 Fault Handling

The function passing model includes overloaded variants of the primitives
discussed so far which enable the definition of flexible fault handling seman-
tics. The main idea is to specify fault handlers for subgraphs of computation
DAGs. The guiding principle is to make the definition of the failure-free
path through a computation DAG as simple as possible, while still enabling
the handling of faults at the fine-granular level of individual SiloRefs.

Defining fault handlers Fault handlers may be specified whenever the
lineage of a SiloRef is extended. For this purpose, the introduced map and
flatMap primitives are overloaded. For example, consider the previous ex-
ample, but extended with a fault handler:

val persons: SiloRef[List[Person]] = ...
val vehicles: SiloRef[List[Vehicle]] = ...
// copy of ‘vehicles' on different host ‘h!
val vehicles2 = SiloRef.fromFun(h) (spore §
val localVehicles = vehicles
() => localVehicles

)

val adults =
persons.map(spore §{ ps => ps.filter(p => p.age >= 18) 3)

// adults that own a vehicle
def computeOwners(v: SiloRef[List[Vehicle]])
spore §
val localVehicles = v
(ps: List[Person]) => localVehicles.map(...)

val owners: SiloRef[List[(Person, Vehicle)]]
adults.flatMap(computeOwners(vehicles),
computeOwners(vehicles?))

Importantly, in the flatMap call on the last line, in addition to computeOwners(vehicles),
the regular spore argument of flatMap, computeOwners(vehicles?2) is passed
as an additional argument. The second argument registers a failure handler
for the subgraph of the computation DAG starting at adults. This means
that if during the execution of computeOwners(vehicles) it is detected that
the vehicles SiloRef has failed, it is checked whether the SiloRef that the
higher-order combinator was invoked on (in this case, adults) has a failure
handler registered. In that case, the failure handler is used as an alternative
spore to compute the result of adults.flatMap(..). In this example, we
specified computeOwners(vehicles2) as the failure handler; thus, in case
vehicles has failed, the computation is retried using vehicles2 instead.
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2.3 Peer-to-peer Patterns

So far, our examples have focused on master-worker topologies that underly
models like Spark—i.e. a master node specifies identical DAGs of computa-
tion for all worker nodes to follow.

The function passing model, however, is not limited to these sorts of topolo-
gies. It is indeed possible to develop decentralized, peer-to-peer topologies
on top of the function passing model. For example, a single compute node
may host silos that are remotely referenced by remote SiloRefs, as well as
SiloRefs remotely referencing silos on other compute nodes.

Further, as we show in the following example, it’s also possible for multiple
clients to build completely different DAGs of computation off of some source
silo. In effect, this enables datasets to be shared—they exist once in memory
on some node, but can be used and transformed in different ways by different
clients.

Consider the following example. We start by populating an initial silo repre-
senting a dataset of Vehicle objects on Host("1lmpsrvl.scala-lang.org", 9999).

val 1mpsrvl = Host("lmpsrvl.scala-lang.org", 9999)

// client #1

// populate initial silo

val vehicles: SiloRef[List[Vehicle]] =
Silo.fromTextFile(1mpsrvl) ("hdfs://...")

val silo2 = vehicles.map(spore §
(vs: List[Vehicle]) =>
// extract US state from license plate string, e.g, "FL329098"
vs.map(v => (v.licensePlate.take(2), v)).toMap

kD)

val vehiclesPerState = silo2.send()

// client #2
// get siloref for silo that is being materialized due to client #1
val vehicles: SiloRef[List[Vehicle]] =

Silo.fromTextFile(1mpsrvl) ("hdfs://...")

val silo2 = vehicles.map(spore §
// list all vehicles manufactured since 2013
(vs: List[Vehicle]) => vs.filter(v => v.yearManufactured >= 2013)

kD)

val vehiclesSince2013 = silo2.send()

Here, client #1 would like to perform some sort of computation based on
the states that vehicles are registered in. Another client, client #2 would
also like to access this dataset. To do so, one must simply once again invoke
fromTextFile on the same host, Host("1lmpsrvl.scala-lang.org",9999)
to obtain a SiloRef that points to a corresponding silo that is already or
soon to be materialized. From here, client #2 is able to build an entirely
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different DAG of computations, for instance in this example, filtering the
original vehicle dataset to obtain only vehicles manufactured since 2013.

2.3.1 Decentralized Fault-Handling

Another peer-to-peer pattern possible in the function passing model is decen-
tralized fault handling. One may specify strategies to transfer computation
to other nodes in the event of failure.

Consider the following example: an aggregation should be performed as soon
as two silos vehicles and persons have been materialized. The aggregation
result is then combined with a silo info on some host different from the local
host. The final result is written to a distributed file system:

object Utils §
def aggregate(vs: SiloRef[List[Vehicle]],
ps: SiloRef[List[Person]]): SiloRef[String] = ...
def write(result: String, fileName: String): Unit = ...
3
val vehicles: SiloRef[List[Vehicle]]
val persons: SiloRef[List[Person]]
val info: SiloRef[Info]
val fileName: String
val done = info.flatMap(spore §
val localVehicles = vehicles
val localPersons = persons
(localInfo: Info) =>
aggregate(localVehicles, localPersons).map(spore §
val in = locallnfo
res => combine(res, in)
3
3).map(spore §
val captured = fileName
combined => Utils.write(combined, captured)

"hdfs://..."

D)

done.cache() // force computation

This program does not tolerate failures of the host of info: if it fails before
the computation is complete, the result is never written to the file.

We can overcome this using fault handlers. It is possible to introduce another
backup host which takes over in case the host of info (which is the same as
the host of done) fails at any point. Let’s try the above computation again,
this time using fault handlers to transfer the computation to a backup node
in the event of a failure:

val doCombine = spore §
val localVehicles = vehicles
val localPersons = persons
(localInfo: Info) =>
aggregate(localVehicles, localPersons).map(spore §
val in = locallnfo
res => combine(res, in)
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3
3
val doWrite = spore §
val captured = fileName
combined => Utils.write(combined, captured)
3
val done = info.flatMap(doCombine) .map (doWrite)
val backup SiloRef.fromFun(hostb) (spore § () => true %)
val recovered = backup.flatMap(
spore §
val localDone = done
x => localDone

3
spore § // fault handler
val localInfo = info
val localDoCombine = doCombine
val localDoWrite = doWrite
val localHostb = hostb
X =>
// fromLineage makes sure, we re-run on hostb, rather than
// the host of info. That is, we just duplicate the lineage.
val restoredInfo = SiloRef.fromLineage(localHostb) (localInfo)
restoredInfo.flatMap(localDoCombine).map(localDoWrite)
3
)
done.cache() // force computation on host of local

recovered.cache() // force computation on backup host

First, the local variables doCombine and doWrite refer to the verbatim spores
passed to flatMap and map above. Second, backup is a dummy silo on a
backup host hostb. It is used to send a spore to the backup host in a
way that allows it to detect whether the host of done/info has failed. The
fault handling is done by calling flatMap on backup, passing (a) a spore for
the non-failure case and (b) a spore for the failure case. The spore for the
non-failure case simply returns the done SiloRef. Importantly, this enables
hostb to detect failures of the host of done. Upon detecting such a failure,
backup.flatMap applies the spore for the failure case. In this case, the
lineage of the captured info SiloRef is used to restore its original contents
in a new silo created on the backup host hostb. Its SiloRef is then used to
retry the original computation.
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Chapter 3

Analysis and Project
Schedule

When first looking at the realization of any project, one must take crucial
decisions that certainly determine its success. This chapter presents a brief
overview of the requirement analysis and delves into the process of figuring
out the needs and properties of the project. Further, it explains the software
development methodology and takes a close look to the project schedule. As
a whole, it elucidates the decision-making process that guided the following
implementation.

3.1 Methodology

The function-passing implementation has followed a standard software de-
velopment process based on agile methodologies. Given the nature of the
project, Scrum (Sutherland and Schwaber, 1995) was the employed method-
ology. This decision has been proven to be key to the final success of the
project.

In hindsight, traditional alternatives such as the waterfall model would have
headed this project to failure. Their major disadvantages are their strict-
ness and inability to lazily adapt to possible real-world scenarios. While
putting them in practice, they make strong assumptions on the stability of
the technology stacks on which the software projects are based, and don’t
take into account unpredicted circumstances. As an example, several un-
expected situations did indeed occur throughout the development process.
These situations, explained later in detail, made reconsider aspects of the
project, as well as changed the prioritisation of the tasks.

In particular, these properties don’t suit the needs of a research project that
sports the following features:

e Volatility of requirements. Although requirements were set from
the beginning, goals like memory reclamation were initially included in
the implementation schedule. After the start of the project, however,
investigation concluded that it was a non-trivial feature and required
further theoretical considerations. The theory details were figured out,
but its implementation was deliberately set aside.

o Instability of software dependencies. The function-passing model
depends on two previous veins of work: Scala Pickling (Miller et al.,
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2013) and (Miller, Haller, and Odersky, 2014). These research projects
were relatively young and considered to be stable. However, the com-
plexity of the addressed problems introduced unexpected bugs that
were discovered and fixed during the execution of the implementation,
as described in Section 4.3.

¢ Discovery of gaps in the theory that make the implementation
unpractical. For instance, as explained in Section 4.5, the static seri-
alization of messages went through different implementation attempts
that eventually showed its unfeasibility. Consequently, the model took
another different approach.

Unlike most of the traditional industry software, research needs an even
higher level of flexibility: additional requirements are discovered during the
ongoing development, and original ideas to tackle fundamental problems turn
out to be unfeasible in practice. This is not a consequence of an ill definition
of requirements, but an intrinsic risk of any research project. Independent
of the quality of their definition, the degree of predictability is lower. As a
result, both theory and practice have to happen together, confirming each
other through experimentation. This is known as empiricism, an empirical
process control theory that is the basis for the Scrum theory (Sutherland
and Schwaber, 2013).

In short, a customary Scrum technique worked flawlessly for such kind of
project. It is an effective method for projects with tight timelines, changing
requirements, and business criticality (Pressman and Maxim, 2015). Other
agile alternatives were ruled out based on the work environment, as in the
case of XP (Extreme Programming). The next section provides a thorough
explanation of the used methodology.

3.1.1 Scrum

In a nutshell, Scrum is a framework for developing and sustaining complex
products. It helps address complex adaptive problems, while productively
and creatively delivering products of the highest value possible (Sutherland
and Schwaber, 2013).

With it, the function-passing model makes use of a slight variation of Scrum
that combines it with Kanban, a technique that promotes a better task
management. Also, the roles and meetings section differs from a conventional
Scrum approach.

Scrum has three major components: teams, sprints and scrum meetings.
These three combined result in an easy iterative workflow, which is the
essence of the model. The workflow is depicted in figure 3.1.

The Scrum Team

The Scrum team consists of the Product Owner, the Development Team,
and the Scrum Master. By definition, teams are self-organizing and cross-
functional, that is, they are experts that know how to accomplish their work
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Ficure 3.1: Example of a mnormal Scrum workflow,
from (Schwaber, 2002).

without the intervention of third parties. The general idea is to deliver
products by iterations, maximizing the feedback.

The roles of the Scrum team are the following:

e Product Owner: Heather Miller, the original creator of the function-
passing model and first author of the projects Scala Pickling and Spores
(safe closures). She was in charge of ensuring a positive outcome out
of the project by supervising it directly.

¢ Scrum Master: Heather Miller. As Scrum master, she was also the
project manager of the function-passing implementation, and helped
the development team to organise the project in manageable chunks of
work.

¢ Development Team: Jorge Vicente Cantero. As the only compo-
nent of the development team, he was in change of developing the
implementation, as well as contributing theoretical improvements to
the theory. My concrete contributions are explained in Chapter 4.

Heather Miller, as the Product Owner and the Scrum Master, was able to
follow closely the evolution of the implementation, make meet the deadlines
and ensure the correct execution of the methodology. Her vision of the final
result and previous knowledge of all the technology stack placed her in a
favorable position to orchestrate the entire project.

Sprints

Sprints are independent, self-contained periods of time in which the product
is developed. As the basic time unit of any project, it comprises several tasks
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FIGURE 3.2: Roles in the Scrum Team, from (Vashishtha,
2012).

that achieve a concrete goal towards the desired software implementation.
It is meant to iterate over the functionality and produce concrete, working
prototypes that can be turned in to the product owner and receive appropiate
feedback.

Sprints usually last one month and run sequentially. Their length can vary,
although it is customary to keep the duration as is. The time requirements
for this thesis set the duration of the project to a total amount of 300 work-
ing hours. Therefore, to comply with the timeline, adjustments were applied
to both the length and the quantity of sprints. These time constraints even-
tually resulted in one sprint every 12 days with a workload of 5 hours. That
added up to a total of 4 sprints.

Scrum Meetings

While a correct scheduling of the sprints is indispensable, Scrum meetings
are an important element of the methodology and improve the control over
the project evolution.

Traditionally, there are two types of meetings: daily meetings that give day-
to-day feedback on the status of the tasks under development, and sprint
review meetings, also known as montly meetings, that report on the goals
achieved in every sprint (Sutherland and Schwaber, 2013).

As for the meetings, they were similarly held after each sprint. The daily
meetings, however, underwent some changes. A weekly meeting was carried
out during one or two hours, and there was a summary of the achieved goals
and difficulties almost every day. Unlike the sprint review meetings, these
were more fast and informal. When no progress was done, in cases where
the complexity of the tasks was high and required time, they were skipped.

3.1.2 Kanban

Kanban (Monden, 1983) is a scheduling system for lean manufacturing and
just-in-time manufacturing (Kanban). In short, it is widely used in the
software industry to accurately organise the product backlog, coordinate
the team members and show the overall status of the project in one board.
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3.2 Requirement Analysis

A careful requirement analysis sets the scope, studies the dependencies be-
tween features, and helps prioritise the critical functionalities. This process
usually works as follows: (1) elicits requirements, (2) analyzes them, and (3)
documents them, translating them into concrete, measurable goals.

The requirements elicitation is the collection of all the requirements of a sys-
tem from the product owner and the users,' 4.e. distributed systems builders.
Whereas most of them were specified by a previous draft of the function-
passing model paper,” others were discovered during the course of this anal-
ysis and extracted from interviews with the supervisor.

Once requirements are set and analyzed, the next step is to document them.
These specifications provide actionable items to later phases of the project.
They are self-contained and explicit, usually stated in a constrained structure
and with a finite set of technical words. Requirements can be documented in
several ways, from use case diagrams to process specifications. In our case,
user stories are the employed format. Following the agile mindset (Beck et
al., 2001), user stories are, we believe, a perfect way to convey the essence
of the requirements. Widely used in industry, they are a perfect fit for those
who prefer simplicity over exhaustivity.

User Stories User stories are particularly useful for testing purposes.
They don’t only document requirements, but validate them. Their structure
is explained in Figure 3.3. By convention, they are worded in the following
fixed structure ’As a <role>, I want <a goal/desire> so that <benefit>".
They are identified by unique numbers and have a more detailed description,
time and priority estimates?.

Story Type

Estimated Story Exploration
Points. factor

FIGURE 3.3: Structure of a user story, from (Yodiz, 2012).

! Any reference to stakeholders is consciously ommitted. As a research project, the
stakeholders are not clear and well defined. Intuitively, they would be the whole Scala
community, as well as distributed systems’ builders, but they haven’t officially participated
in this analysis. Previous contacts with popular companies like Databricks showed positive
feedback on the proposed model.

2The current version of the paper is (Miller et al., 2016) and it will be formally presented
to the public in the Onward 2016 conference.

3Time estimates are often represented in terms of story points.
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3.2.1 Functional Requirements

The user stories are specified as follows:

#1 Story points 6 #2 Story points 6
As a user of the API, I want to As a user of the API, I want to map
create remote silos so that I can over any silo so that I can trans-
store my data. form the stored data.

Priority: 100 Priority: 90

#3 Story points 6 #4 Story points 2
As a user of the API, I want to As a user of the API, I want to ex-
flat map over any silo so that I can tend the fault-tolerance mechanism
transform the stored data. so that I can express my own busi-

nes logic.
Priority: 90 Priority: 80

#5 Story points 4 #6 Story points 2
As a user of the API, I want to As a user of the API, I want to im-
plug in any network backend so plement higher-order functions ba-
that I can choose how nodes are con- sed on map and flatmap so that I
nected across networks. can build other interfaces atop of it.
Priority: 60 Priority: 80

#7 Story points 4 #8 Story points 6
As a user of the API, I want to As a user of the API, I want to
cache silos so that they are reused asynchronously send transforma-
by subsequent transformations. tions so that I can build my own

event-based framework.

Priority: 70 Priority: 90

The function-passing model is a middleware. As such, it provides a high-
level API to other software developers that want to build distributed data-
oriented systems. User stories are good at depicting the interaction of the
users and the product—such interaction is accurate and abstracted. But,
when it comes to the design of frameworks, the level of precision vanishes.
For instance, let’s take a simple user story like #2. It states one concrete
behaviour of the system, but for this feature to work several layers of the
framework need to be carefully built, going from the network backend to the
final user interface, and passing through other several layers like the fault-
tolerance layer and stubs®. To solve this issue, a new level of indirection is
required.

4The stub layers provide modularity and allow to plug in different software projects to
satisfy a particular need.
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In order to make the development process easier, these tasks were subdivided
into implementation-oriented tasks. This twofold process encompassed:

e A direct mapping from abstract user stories to the requirements of
each layer of the framework.

e A prioritisation of the features of each layer based on the degree of
dependency that the user stories required.

Figure 3.4 and 3.5 show the final outcome of the process. Tasks have pre-
decessors, on which they depend, as well as time estimates. Tasks were
executed sequentially since there was only one developer. The dependency
graph, which was rather intricate, ruled out any possibility for asynchronous
tasks.
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#  Traits |Title Given Work | Given Earliest |Resources Predecessors
Start
0 WO Function passing model 01 Feb 2016  Heather Miller; Jor...
1 CE Project Start Heather Miller; Jorg...
@ Heather Miller
@ Jorge Vicente Cantero
2@ Pre-production Jorge Vicente Cant... 1
3 & Jorge Vicente Cante...
4 @ Define Goals and Scope 1 day Heather Miller; Jorg...
5¢eE Define User Scenarios 2 days Client; Product Man...
6 & Comparative analysis with 0.5 days Jorge Vicente Cantero; 5
existing alternatives Heather Miller
7E Technical Specifications 2 days Jorge Vicente Cantero 6
8 & Create Project Proposal 1.5 days Project Manager; Jo... 7
9 Create Timeline 0.5 days Project Manager; Jo... 8
10 & Create Product Backlog 2 days Jorge Vicente Cante... 9
11 E Define Workflow and Sprints 0.5 days Jorge Vicente Cantero 10
12 & Prepare project 0.5 days Jorge Vicente Cantero 1
documentation
13 ¢E Pre-production finished Heather Miller 2
14 @ Function-passing model Jorge Vicente 13
Production Cantero
15 Q4 Sprint 1 - Getting familiar 12 days Jorge Vicente
with the libraries Cantero
16 Play around with macros 8 days Jorge Vicente Cantero
17 Study internals of scala 2 days Jorge Vicente Cantero 16
pickling
18 Study internals of spores 2 days Jorge Vicente Cantero 17
19 Sprint 1 finished Jorge Vicente Cantero 15
20 OF Sprint 2 - Basic prototype 12 days Jorge Vicente Cant... 19
21 Introduce modular 1 day Jorge Vicente Cantero
backend-independent
design
22 Make Netty-based network 4 days Jorge Vicente Cantero 21
layer
23 Polish network layer 1 day Jorge Vicente Cantero 22
24 Make test examples 1 day Jorge Vicente Cantero 23
compile
25 Add abstract layer over 1 day Jorge Vicente Cantero 24
scala pickling
26 Use static only mode for 2 days Jorge Vicente Cantero 25
pickling and enable
automatic pickling
27 Model Silo, SiloRef and 1 day Jorge Vicente Cantero 26
SiloFactory
28 Model messaging layer 1 day Jorge Vicente Cantero 27
29 Sprint 2 finished Jorge Vicente Cantero 20
30 OF Sprint 3 - Working prototype 12 days Jorge Vicente Cant... 29
31 Solve basic issues with 3 days Jorge Vicente Cantero
static only in scala pickling
and use new version
32 Generalize type parameters 0.5 days Jorge Vicente Cantero 31
in Silo
33 Draft basic API 1.5 days Jorge Vicente Cantero 32

FIGURE 3.4: View of the implementation tasks 1-33.
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34 Introduce implicits-based 0.5 days Jorge Vicente Cantero 33
API for settings
customisation

35 Rethink pickling design for 4 days Jorge Vicente Cantero 34
Spores and refactor it
36 Introduce asynchronous 2.5 days Jorge Vicente Cantero 35
message handling and fault
tolerance
37 Sprint 3 finished Jorge Vicente Cantero 30
38 OE Sprint 4 - Optimized fully- 12 days Jorge Vicente 37
working prototype Cantero
39 Benchmark the function- 0.5 days Jorge Vicente Cantero
passing model (BabySpark
vs Spark)
40 Achieve ultra-performant 2 days Jorge Vicente Cantero 39
pickling
4 Use wait-free algorithms 2 days Jorge Vicente Cantero 40
instead of blocking data
structure
42 Remove blocking queue in 1 day Jorge Vicente Cantero 41
the Receptor
43 Try to share SiloRefs 1 day Jorge Vicente Cantero 42
among nodes in the
network
44 Improve fault-tolerance 2 days Jorge Vicente Cantero 43
mechanisms
45 Profile, improve runtime 3.5 days Jorge Vicente Cantero 44
behaviour and polish
benchmarks
46 Sprint 4 finished Jorge Vicente Cantero 38
47 Sprints finished 14; 46
48 [# Post-production Jorge Vicente Cant... 47
49 & Revisit design and 1 day Jorge Vicente Cantero;
implementation Heather Miller
50 ¢E Project retrospective and 0.5 days Jorge Vicente Cantero; 49
study of results Heather Miller
51 & Get together the 2 days Jorge Vicente Cantero 50
documentation and write up
tutorials
52 Write up Bachelor's thesis 15 days Jorge Vicente Cantero 51
53 ¢E Project finished Jorge Vicente Cantero 48

FI1GURE 3.5: View of the implementation tasks 34-53.

3.2.2 Non-functional Requirements

Non-functional requirements are the quality attributes of the function-passing
model, and describe non-behavioural requirements. They summarize the
strong points of the final implementation and focus on their properties.

At the core of the system, it lies the idea that frameworks built atop of the
function-passing model have more benefits than their counterparts.” There-
fore, it aims at achieving the following properties:

1. Performance. The difference between rolling-your-own-framework
strategy and leveraging the function-passing model has to be notice-
able, and significantly faster.

5The counterparts are the current frameworks working in production that roll their
own implementations to support only one use case: passing closures between distributed
networks in a fault-tolerant, reliable way.
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2. Fault tolerance. Any distributed system builder knows that fault
tolerance is difficult. The function-passing model addresses this issue
by design—it provides extensible ways to enrich runtime behaviours
when failures occur.

3. Modularity. End-users have specific requirements when building
their products. These needs change depending on the technology stack
that is used. In order to satisfy any potential users, they must be able
to make use of the proposed model over any network backend.

4. Mantainability. Non-maintainable products are not able to keep up
with the time. By building atop the model, frameworks don’t need
to implement their own solutions to solve a general problem. Conse-
quently, codebases shrink and are simplified.

The aforementioned properties are explained in detail in Chapter 4, that
discusses the implementation goals and how they are achieved.

3.3 Project Schedule

Research projects need special attention from a software engineering per-
spective, as pointed out in 3.1. The same argument applies for the project
schedule—it is impossible to make objective, predictable time estimates over
the whole duration of the project. A new procedure to schedule the project
is necessary.

Based on the Scrum methodology, it’s possible to measure the time of the
project by adding the story points of every user story, and having a time
estimate for every story point. Such information, which usually is backed up
by real data of previous projects, gives a hint on the overall amount of time
required to build the framework. The lack of data results in a pessimistic
estimation: 5 hours per story point.

Thereby, a sensible time estimate is 180 hours (5 hours/story point - 36 story
points = 180 hours), without considering the time for getting familiar with
the ecosystem and libraries. As a sprint is 12 days long, i.e. 48 hours, there
is still time for an additional sprint. Below, we synthesize the general tasks
and ideas behind each sprint. A complete description of the carried out tasks
are is shown in Figures 3.6, 3.7 and 3.8.

Sprint 1 — Getting ready As the first sprint, the goal is to introduce the
technology stack and, in particular, compile-time metaprogramming in Scala,
which lay the foundations of Scala Pickling and Spores. Not only restricted to
an in-depth study of both frameworks, this sprint involves experimentation
with the Scala and Java Reflection APIs, the internals of the JVM and
the GC (Lindholm et al., 2013; Bloom, 2013; Microsystems, 2006; Systems,
2012).5

SPrevious knowledge about the JVM is critical with regard to building a performant
framework, and even more important for frameworks whose internals make use of reflection.
Understanding how the JVM facilitates such operations is key to avoid endless debugging
sessions. As a side note, reflection in the function-passing model would be disabled by
default, but scala-pickling still needs to deal with it.
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Sprint 2 — Basic prototype The second sprint aims at building the
network primitives, modularising the network layer and performing a quick
modeling of Silos and SiloRefs. The expected output is a proof of con-
cept that illustrates the feasibility of the function-passing model atop of
Netty (Netty, 2011).

Sprint 3 — Working prototype At this point, the frameworks is in a
rough state. Yet, some key features are missing, fault-tolerance is flaky and
performance is bad. The working prototype turns the proof of concept into
a more robust and rich framework, generalizes the use cases and starts to
draft the final API.

Sprint 4 — Optimizing the model While the working prototype suits the
needs of most users, advanced developers that need to build high-performance
scalable frameworks wouldn’t be happy with the current implementation of
the programming model. Hence, this sprint polishes the model, the inter-
faces, the fault-tolerance primitives and dramatically improves serialization.

WK 5, 24 January WK 6, 31 January WK 7, 7 February WK 8, 14 February ‘ WK 9, 21 February WK 10, 28 Fet
26/27 28/29/30 31123 4[56 |78 9 1011 12[1314[15 16[17[18]19]20|21]22 23 [24 25 2627 28 20| 1 | 2
Function passing model €

Project Start ‘
Heather Miler 4p

Jorge Vicente Cantero 4 ‘

Pr a

Define project requirements

Jorge Vicente Cantero; Heat... ‘
Define Goals and Scope Heather Miller; Jorge Vicente...
Define User Scenarios Client; Product Manager; Jor... ‘
Comparative analysis with e... Jorge Vicente Cantero; Heat...
Technical Specifications Jorge Vicente Cantero ‘
Create Project Proposal Project Manager; Jorge Vice...
Create Timeline Project Manager; Jorge Vice.... ‘
Create Product Backlog Jorge Vicente Cantero; Heat....

Define Workflow and Sprints Jorge Vicente Cantero ‘

Prepare project documentation

Pre-production finished ? Heather Miller ‘
Function-passing model Pro...

|
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Jorge Vicente Cantero

Play around with macros [ h Jorge Vicente Cantero|

Study internals of scall‘a pickl... Jorge Vicente Cantero
Study|internals of spores Jorge Vicente Cantero
|

FI1GURE 3.6: Gantt chart that shows the start of the project
and the schedule for sprint 1.
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Sprint 1 finished Jorge Vicente Cantero ‘

Sprint 2 - Basic prototype

Introduce modular backend-i... ficente Cantero ‘

Make Netty-based network ... Jorge Vicente Cantero
olish network layer Jorge Vicente Cantero ‘

Make test examples compile Jorge Vicente Cantero

Add abstract layer over scal.. Jorge Vicente Cantero ‘

Use static only mode for pic... Jorge Vicente Cantero
Model Silo, SiloRef and SiloF... Jorge Vicente Cantero ‘
Model messaging layer (__) Jorge Vicente Cantero

Sprint 2 finished (> - e aCarae ‘

Sprint 3 - Working prototype C-

Solve basic issues with stati... Jorge V\cen#e Cantero

Generalize type parameters i... Jorge Vicente Cantero

Draft basic API ch%e Vicente Cantero
Introduce implicits-based AP. .

Rethink pickling design Jf;r S...

Jorge Vicente Cantero
je Vicente Cantero

‘ Sprint 3 finished

Introduce

Sprint 4 - Optimized fully-wo...
‘ Benchmark the function-pas... (-
Achieve ultra-performant pic... [

‘ Use wait-free algorithm

Re

FI1GURE 3.7: Gantt chart that shows the schedule for sprints
2 and 3.

©

+Vicente Cantero

Jorge Vicente Cantero|
2us mes.

Sprint3 finshed

Jorge Vicente Cantero

Jorge Vicente Cantero

3print 4 - Optimized fully-wo.

Achieve ultra-performant pic...

Use wat-free algorithms inst... Jorge Vicente Cantero

Ty
Improve fault-tolerance mec. Jorge Vicente Cantero

Proflle, improve runtime beh. Jorge Vicente Cantero

Sprint 4 finished Cs{)| Jorgs Vicente Cantero
s it %
Revaltdesin and implamen... (0 Jord Vicste Ganter;Heat,
Gettogetherth documerta... Jorgo Voants Garfero
Wite up Bachelor's hesis ) | Jorge Vicente Caftero
Project finished Jorge Vicente Cantero

FIGURE 3.8: Gantt chart that shows the schedule for the
last sprint.
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Chapter 4

The Function-Passing
Implementation

The presented programming model has been fully implemented in Scala, a
functional programming language that runs on both JVMs and JavaScript
runtimes. The function passing model is compiled and run using Scala 2.11.8.
The implementation, which has been published as an open-source project,’
runs currently only on the JVM? and builds on two main Scala extensions:
Scala Pickling (Miller et al., 2013)? and Spores (Miller, Haller, and Oder-
sky, 2014).* Along this chapter, we focus on high-level concepts and the
improvements performed in the aforementioned dependencies, not on hid-
den and specific difficulties of the implementation.

These two projects are the main pillars of the implementation. It turns out
that binding them efficiently involves more intricacies than one would expect,
due to the addititional difficulty of reusing two macro-based compiler
extensions.” Such binding accounts for a large amount of the work to
get the function-passing model working correctly. The effort to bind both
projects is explained in detail below.

Additionally, the implementation required external changes and improve-
ments on Spores and Scala Pickling. In the next subsections, we’ll discuss
the main contributions and detail our solutions.

4.1 Goals of the Implementation

The design of the framework has been guided by the following principles:

Yhttps://github.com/jvican /function-passing.

2The implementation is theoretically compatible with Scala.js as it avoids the use of
all the missing features in JavaScript environments. However, we don’t provide a working
implementation for JavaScript since Netty, the network backend, makes a wide use of
reflection and, thus, it’s not Scala.js compatible. Third parties are invited to contribute a
network backend for JavaScript.

3https://github.com/scala/pickling

4https://github.com/heathermiller/spores

5To fully understand how they work, we recommend having a look at Appendix A and
Appendix B.
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Simplicity and ease of use To encourage potential users to employ the
programming model, public interfaces are kept simple troughout the im-
plementation. Concretely, we opt for providing sane defaults settings that
ease the basic users’ workflow, while we allow advanced users to override
them using implicits. This results in a flexible, powerful framework that
can carry out high-level tasks, while still allowing advanced users to bene-
fit from a more low-level approach that enables them to roll out their own
frameworks.

Backend decoupling The function-passing model uses an abstraction
over network connections. Ultimately, users take the crucial decisions about
the internals of their systems based on their particular needs. Whether they
build upon the model in existing codebases or from scratch, a clear sep-
aration between frontend and backend facilitate potential users to switch
backends and use a concrete technology stack. Teams already settled on
concrete technologies would likely want to reuse them. Modularity comes at
a price: it entails limiting the number of fixed dependencies of the project,
to make it lightweight and easy to plug in.

With this in mind, the implementation decouples the network layer from
the higher-level layers. In the default implementation, the Netty network
framework (Netty, 2011) is the official backend. Third parties are given the
possibility of building their own network layer for other backends (e.g. be it
Akka or their own).

Architecture
User API

Pickling and Spores Binding

N

Scala Pickling} ‘ Spores

-

Fault Tolerance

Network Abstraction

Netty ’ E Other

FIGURE 4.1: Architecture that show the layers of the
function-passing implementation.

Fault tolerance The function-passing model is fault-tolerant by design.
In case anything goes wrong, lost data is recovered by recomputation. Yet, it
is possible for the implementation to provide more fault-tolerant guarantees
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by taking care of network and power errors. To face them, the implemen-
tation provides its own network protocol, that protects the system from
spurious failed deliveries of messages, and a persistence layer, that keeps
track of the state at any given moment and allows to recover from it.

Performance The programming model is aimed at laying the groundwork
for building high-performance applications. Importants aspects that deeply
affect performance are the speed of the network layer and serialization/dese-
rialization of messages. Thus, we achieve performance by two means: (1) we
build on top of Netty, one of the most popular asynchronous event-driven
network application framework on the JVM, and (2) we use Scala Pickling, a
performant serialization framework that outperforms the Java Serialization
library (Carpenter et al., 1999) and other popular projects like Avro (Apache,
2015a).

4.2 Background

4.2.1 Scala Pickling

Scala Pickling is a type-safe and performant serialization framework based
on object-oriented pickler combinators which (a) enables retrofitting exist-
ing types with pickling support, (b) supports automatically generating pick-
lers at compile time and at runtime, (c¢) supports pluggable pickle formats,
and (d) does not require changes to the host language or the underlying
virtual machine. The function passing implementation benefits from the
maturity of the project, which supports pickling/unpickling a wide range of
Scala type constructors. Pickling has evolved from a research prototype to
a production-ready serialization framework that is now in widespread com-
mercial use.

Furthermore, it is extensible in several important ways. First, building on
an object-oriented type-class-like mechanism (S. Oliveira, Moors, and Oder-
sky, 2010), this approach enables retroactively adding pickling support to
existing, unmodified types. Second, it provides pluggable pickle formats
which guarantee that type-specialized picklers are portable and carry over
to different pickle formats.

Among other, it sports the following properties:

o Ease of use. Simplified programming interface that aims to minimise
boilerplate, alike other more mainstream libraries like Java’s serializa-
tion framework (Carpenter et al., 1999).

¢ Performance. The generated picklers are efficient, enabling their use
in high-performance distributed systems, and allow both static and
runtime pickling.

o Extensibility. The design of the framework allows type-class-like ex-
tensibility through implicits, enabling pickler definition in third-party
libraries and easing the process of supporting types retroactively.
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¢ Pluggable Pickle Formats. Scala Pickling allows to swap target
pickle formats, or for users to provide their own customized format (via
typeclasses in Scala). By default, it allows binary and json formats.

o Type safety. Picklers are type safe through (a) type specialization
and (b) dynamic type checks when unpickling to transition unpick-
led objects into the statically-typed “world” at a well-defined program
point.

¢ Robust support for object-orientation. Concepts such as subtyp-
ing and mix-in composition, widely used in Scala, are also supported.

The Basics

Scala Pickling was designed so as to require as little boilerplate from the
programmer as possible. For that reason, pickling or unpickling an object
obj of type Obj requires simply:

import scala.pickling._
val pickled = obj.pickle
val obj2 = pickle.unpickle[0bj]

Here, the import statement imports scala/pickling, the method pickle trig-
gers static pickler generation, and the method unpickle triggers static un-
pickler generation, where unpickle is parameterized on obj’s precise type
0Obj. Note that not every type has a pickle method; it is implemented as
an extension method using an implicit conversion. This implicit conversion
is imported into scope as a member of the scala.pickling package.

Optionally, a user can import a PickleFormat. By default, the framework
provides a Scala Binary Format, an efficient representation based on arrays
of bytes, though the framework provides other formats which can easily be
imported, including a JSON format. Furthermore, users can easily extend
the framework by providing their own PickleFormats. For more information,
refer to the original paper (Miller et al., 2013).

Appendix B explains macros and provides an example that illustrates the
basic principles of the Scala Pickling implementation.

4.2.2 Spores
The Basics

Spores (Miller, Haller, and Odersky, 2014) are safe closures that are guar-
anteed to be serializable and thus distributable. They are a closure-like
abstraction and type system which gives authors of distributed frameworks
a principled way of controlling the environment which a closure (provided
by client code) can capture. This is achieved by (a) enforcing a specific syn-
tactic shape which dictates how the environment of a spore is declared, and
(b) providing additional type-checking to ensure that types being captured
have certain properties.
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A spore consists of two parts:

e the spore header, composed of a list of value definitions.
o the spore body (sometimes referred to as the “spore closure”), a
regular closure.

This shape is illustrated below.

spore {
val yl: S1 = <expril>
} spore header
val yn: Sn = <exprn>

(x: T) => {
/...

}

}

} closure/spore body

The characteristic property of a spore is that the spore body is only allowed
to access its parameter, the values in the spore header, as well as top-level sin-
gleton objects (Scala’s form of modules). The spore closure is not allowed to
capture variables other than those declared in the spore header (i.e. a spore
may not capture variables in the environment). By enforcing this shape,
the environment of a spore is always declared explicitly in the spore header,
which avoids accidentally capturing problematic references. Moreover, im-
portantly for object-oriented languages like Scala, it’s no longer possible to
accidentally capture the this reference.

Spores also come with additional type-checking. Type information corre-
sponding to captured variables are included in the type of a spore. This en-
ables authors of distributed frameworks to customize type-checking of spores
to, for example, exclude a certain type from being captured by user-provided
spores. Authors of distributed frameworks may kick on this type-checking
by simply including information about excluded types (or other type-based
properties) in the signature of a method. A concrete example would be
to ensure that the map method on RDDs in Spark (a distributed collection)
accepts only spores which do not capture SparkContext (a non-serializable
internal framework class).

The Benefits of Pickling Spores

In order to understand the pickling process, let’s look at the arity-1 spore
type signature:

trait Spore[-A, +B] extends Functioni[A, B] {
type Captured
type Excluded

3

Spores keep the same semantics as regular functions. Therefore, spores
are also defined contravariant in their argument type A and covariant in
their result type B. Also, the Spore trait doesn’t define any extra method;
a concrete spore would override the abstract apply() method defined in
the Functionl trait. Nevertheless, spores enrich the function type signa-
ture by adding two new type members: Captured and Excluded. These are
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known as type refinements and enforce a certain shape of the spore. Con-
cretely, the Captured type member will contain the types of each captured
variable. These types allow users to match concrete spore types. For in-
stance, any function from T to S that uses two environment variables of type
String and Int, matches Spore[T, S] §{ type Captured = (String, Int)
3. Note that captured types are stored in left-biased tuples and that there’s
not size limitation; capturing one more environment variable, a String,
would result in ((String, Int), String).

To ensure safe and efficient distribution of closures, the model leverages both
syntactic and type-based restrictions. For instance, closures sent to remote
machines are required to conform to the restrictions imposed by the so-
called “spore” abstraction. Among others, the syntax and static semantics
of spores guarantees the absence of runtime serialization errors due to clo-
sure environments that are not serializable. Since spores are guaranteed to
capture only the defined variables in the spore header, checking the proper
functioning of the serialization code is performed at compile-time based on
the type of the captured variables, unlike other distributed systems whose
serialization errors occur at runtime and functions can capture any envi-
ronment variable. In this case, the compiler looks for implicit instances of
Picklers and Unpicklers of a spore, that in turn looks for the same instances
for every captured type, failing if there’s none. Note that the implicit search
is triggered by the full spore type, which is enriched with the captured types
and excluded types.

Besides, spores provide another advantage over conventional distributed
functions—they improve error reporting. In case the serialization of a cap-
tured variable is not possible, the user receives rich feedback at compile-
time, which pinpoints the concrete issues and the types involved in them.
This feature eliminates the hassle of figuring out runtime serialization errors,
which are typical of state-of-the-art distributed systems (Miller, Haller, and
Odersky, 2014), and whose error reports lack concrete type information and
hinders problem diagnosis and debugging.

Spores and Stable Paths

The body of spores can only reference to stable paths. These are expressions
that contain selections and identifiers and for which each selected entity is
stable. For instance, spores can be defined by object definitions or by value
definition of non-volatile types. A spore that references to a term declared
inside a class is not in a stable path—its accessibility depends on the class
instance.

// Spore references to a stable path, compiles
val sp: Spore2[Int, Int, Int] = spore §
(x: Int, y: Int) => Math.abs(x + y)

// Spore references to a non-stable path, doesn't compile
val sp: Spore2[Int, Int, Int] = spore §
(x: Int, y: Int) => mathUtils.abs(x + y)
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For a deeper understanding of spores, see the corresponding publication (Miller,
Haller, and Odersky, 2014).

4.3 Extensions to Scala Pickling

The function-passing model implementation makes extensive and advanced
use of the Scala Pickling framework. Throughout the intensive development
of the model, I discovered and worked around several shortcomings in Scala
Pickling, such as:

4.3.1 Unnecessary Allocation Overhead of Picklers

Problem The absence of implicit picklers in the scope of the call-site im-
pedes the sharing of picklers. Therefore, since no implicit is present, Scala
Pickling generates picklers and unpicklers per call-site. At runtime, the
program triggers the initialization of every independent pickler and unpick-
ler (which in turns initialises inner picklers and unpicklers), leaving a non-
negligible footprint in performance.

Solution The root of this problem lays in the end-users since they interact
directly with the function-passing API. Every operation of such interface
requires implicit instances that, if not in scope, will be generated at the call
sites. Suppose the following program:

case class User(id: String, name: String, age: Int, sex: Boolean)

// Defines a reference to a silo of users
val users: SiloRef[Vector[User]] = ...

val adults = users.map(spore §
(us: Vector[User]) =>
us.filter(u => u.age >= 18)

»

val women = adults.map(spore §
(us: Vector[User]) =>
us.filter(u => u.sex == 1)

kD)

Every method of SiloRef demands an implicit instance of pickler and unpick-
ler for the function passed as an argument. The spore type signature is the
same for the two map operations: Spore[Vector[User], Vector[User]].
At the macro expansion, both pickler and unpickler for that spore are gen-
erated, but twice. By nature, macro expansions happen locally in the place
where they’re run and cannot share access to a top-level element and, conse-
quently, are unable to share implicit instances. Implementing this feature in
macros involves dealing with a lot of compiler issues, specifically related to
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incremental compilation.® This limitation, which is exemplified in Appendix
B provokes independent pickler and unpickler generation, thus an impact in
performance: longer compilation times (the macro generator is executed per
call site) and a hidden cost of object initialization.

Shrewd users can solve this problem by caching picklers themselves:

// Define an object containing the implicits

object CachedPicklers §
type CachedSpore = Spore[Vector[User], Vector[user]]
implicit val ps = implicitly[Pickler[CachedSpore]]
implicit val us = implicitly[Unpickler[CachedSpore]]

3

// Import them in the scope of your call sites
import CachedPicklers._

Nevertheless, the implementation cannot rely on its users’ skills. As we
cannot put an end to this problem once and for all, the solution aims at
reducing its impact. We address the issue of object initialization by caching
and checking whether a pickler/unpickler for a concrete type has already
been used. If so, that one is used. Otherwise, it gets initialised.

4.3.2 Static Pickler Generation

Problem In certain cases, Scala Pickling reports the correct generation
of static picklers, when instead it silently fallbacks to reflection. That is,
the generated picklers will introspect the runtime classes to find out their
internal structure. This poses a major problem: uncertainty, which pre-
vent users from reasoning about deterministic behaviors in their programs.
Further, runtime generated picklers hurt performance and interoperability
with JavaScript. Reflection poses a compatibility problem with JavaScript
because most of the Java Reflection API is not supported in Scala.js (Doer-
aene, 2015). Although this doesn’t mean that every use of reflection is swept
away, the reality is that only a constrained subset of it is possible.

Solution To achieve these guarantees, some parts of the code generator
had to be rewritten from scratch. These refactorings involved: (a) clearly
separating the logic of the code generator into independent, easy-to-mantain
modules (improving the macro structure), and (b) disabling runtime gener-
ation via the use of the staticOnly implicit. This value, when imported in
the scope,” changes the generator backend and disables any kind of runtime
behavior.

With regard to the reflection and Scala.js support, scalajs-reflect is used,
a linker plugin that offers key functionality like lookup by class name. Re-
ducing the use of the Reflection API to a bare minimum has made Scala
Pickling a Scala.js-friendly project.

51t is unclear if upcoming macro support for the next versions of Scala will include this
feature
"The static flag needs to be imported in all the scopes that make use of Scala Pickling.
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4.3.3 Long Compilation Times

Problem Compilation times are an important and, often overlooked, as-
pect of any programming language. In the proposed programming model,
compilation times increased significantly because implicits recursively trig-
ger macro expansions that, in turn, execute an implicit search for every
pickler /unpickler generation. As implicit resolution is expensive, a signifi-
cant amount of time is spent on it. Further inspection of the issue revealed
that there was room for improvement on the way Scala Pickling chained the
picklers through implicits.

In order to introduce these improvements, we use a running example that
goes through all the steps of the implicit search based on the type of a spore.
The following snippet of code

implicitly[Pickler[Spore[Vector[Int], Int]]]
will sequentially look up the implicits as described in Figure 4.2.

P[Spore[Vector[Int],Int]]

T

P[Vector[Int],Int] U[Vector[Int],Int] P[Int] UlInt]

N N
P[Int] UlInt] P[Int] UlInt]

FIGURE 4.2: Tree describing how the implicit search is per-

formed and illustrating dependencies among picklers and un-

picklers for a concrete case. Note that Pickler has been
shortened to P and Unpickler to U.

As we observe, some implicit searches are repeated several times, although
the compiler has already found them before (as in the case of Pickler[Int]
and Unpickler[Int]). Note that, despite looking up the implicit for a
Pickler, Unpicklers are also looked up. This is due to the fact that pick-
lers and unpicklers are generated together® and realized into a new class
of type PU, defined as: abstract class PU[T] extends Pickler[T] with
Unpickler[T]. To generate an unpickler for the spore, a proof that the type
parameters are unpicklable is required.” The problem gets even worse when
we realise that the above implicit search will be duplicated for the implicit
search of Unpickler[Spore[Vector[Int], Int]], that will repeat the same
search in Figure 4.2. As a consequence, P[Int] will be looked up 8 times.
It follows that the hidden cost of the implicit search is exponential in the
depth of the type parameters and type members.

Solution The two proposed changes to address these issues are:

8Picklers and unpicklers are generated together because this helps performance and
cuts off half of the initialization of pickling objects throughout the program lifetime.

9Tt is useful to imagine implicits as a way to provide proofs to the compiler about what
a type can do. In this case, it’s reasonable to fail compilation if we ask for the generation
of an unpickler of a type T[S] where T has an instance of Unpickler but S doesn’t, which
means that S cannot be unpickled.
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o Carefully tweaking and reordering the default implicit values to make
the implicit search shorter. Following the Scala specification language
(Odersky, 2014), the implicit search has a notion of priorities, assigned
depending on the location of each implicit.'” Based on these priorities,
the compiler chooses the highest-priority available implicit instance in
scope. Ideally, the sooner the compiler finds this instance, the shorter
the compilation times.

¢ Performing a concrete, tailor-made implicit search for picklers and un-
picklers. Essentially, this algorithm reproduces the expensive nested
implicit resolution, prefetching all the picklers and unpickler that every
path of the implicit tree shown above needs.

The fact that several implicit searches occur hurt compile-time perfor-
mance dramatically. Working around this problem is, then, essential
to speed up compilation times. The Scala compiler starts the implicit
resolution in the same scope as the location where they are requested.
The solution takes advantage of this fact, and places all the required
picklers and unpicklers in the same scope so that the compiler imme-
diately finds the requested implicits. The hit rate is 100%. The macro
generates equivalent code to:

// Used implicits instances
implicitly[Pickler[Int]]
implicitly[Unpickler[Int]]
implicitly[Pickler[Vector[Int]]]
implicitly[Unpickler[Vector[Int]]]

// Pickler and Unpickler code for the spore type
object SporePU extends PU[Spore[Vector[Int], Int]] § ... %

The results were promising for both approaches combined. We noticed an
improvement in compilation times between 2x and 3x (worst-case scenario).
As an example, the compilation of the Scala Pickling test suite (consisting
of more than 350 tests) dropped from 500 to less than 200 seconds. Note
that users can increase these speedups if they cache picklers as explained in
section 4.3.1, which is a recommended practice.

4.3.4 Inability to Customize Runtime Behavior

Problem Lookup of picklers at runtime is a powerful feature that enables
the re-use of already used picklers in distributed applications.!'! However,
when no cached pickler is found, the default mechanism leverages reflection
to invoke runtime generation.

Solution To still benefit from the caches but avoid reflection, we added the
HybridMode, a pickling strategy that allows runtime pickler lookup but cuts
down any type of runtime generation. We thoroughly explain the solution
in section 4.3.8.

%The Scala linearization order plays a key role in the implicit search since it determines
how the implicit resolution is run.
1 The same happens for unpicklers.
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4.3.5 Pickling and Unpickling Unknown Types

Problem In the function-passing topologies, sender and receiver exchange
messages to produce a meaningful result. The sender, who drives the logic
of the programs, has total information about the exchanged communication
and knows what sends and what expects back as a response. Conversely,
the receiver lacks this information and yet it must be able to communicate
seamlessly with the client, that is, generic message types in the server re-
quired the use of Any, the top type in the Scala type system, whose correct
serialization and deserialization turns out to be essential.

Solution Due to generic message types, Any has to be able to support
most of the possible types.'? Also, support for pickling Any was not provided.
Before, there was not a principled approach to deal with all the possible cases.
Nevertheless, improvements in its functioning were succesful in achieving
so, at the cost of a minimum use of reflection. AnyPicklerUnpickler is
only used for pickling, when the discovery of the class type is obtained via
getClass. At that point, such type information is used for the discovery of
cached picklers/unpicklers. In extreme cases where no cached picklers are
available, it’s theoretically possible to cache runtime generated picklers'® for
later use explained in section 4.3.4. However, enabling this option requires
the end-user not to use the HybridMode. For unpickling generic messages,
no reflection is used at all, instead using types extracted from the received
messages. A full explanation of this situation and its solution is discussed
in section 4.3.8.

4.3.6 Miscellaneous

During the development process, several misbehaviors of the framework have
been reported, especifically in the domain of pickler generation, revealing
some corner cases that were not handled by default. For instance, compiling

// Define B and declare a spore
case class B[S](value: S)
val s: Spore[T, B[S]] = ??? // undefined

// Generate picklers and unpickler
implicitly[Pickler[Spore[T, B[S]1]1]
implicitly[Unpickler[Spore[T, B[S]1]]

fails despite Scala Pickling is capable of generating both pickler and unpickler
for B. This error happens when runtime generation is enabled. If there is no
pickler for a class B, wrapped by another class W (in this case, Spore), then
a brand new pickler for W[A] is created from scratch, without reusing the
static pickler available for W. Therefore, the generated picklers make use of
reflection. Other minor issues are related to: inexistent support for value

128tructural types are not supported by default. By nature, they require runtime checks.
13 As we explain in section 4.3.8 Scala.js supports a restricted subset of the Java Reflection
API, making this possible.
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classes, failed generation for case classes that receive implicit parameters,
etcetera.

The encountered bugs have been filed in the Scala Pickling repository as the
following issues: #4206, #423, #422, #417, #399, #398, #397, #395, #391.

4.3.7 Serialization in the Presence of Existential Quantifica-
tion

Initially, to serialize most message types exchanged by the network commu-
nication layer, runtime-based unpicklers had to be used (meaning unpickling
code discovering the structure of a type through introspection at runtime).
A major disadvantage of runtime-based unpickling is its significant impact on
performance. The reason for its initial necessity was that message types are
typically generic, but the generic type arguments are existentially-quantified
type variables on the receiver’s side. For example, the lineage of a SiloRef
may contain instances of a type Mapped. This generic type has four type
parameters. The receiver of a freshly unpickled Mapped instance typically
uses a pattern match:

case mapped: Mapped[t, s] =>

The type arguments u, and s are type variables. While unknown, the static
type of mapped is still useful for type-safety:

val newSilo = new LocalSilo[v, s](mapped.fun(value))

However, it is impossible to generate type-specific code to unpickle a type
like Mapped[t, s] since they are not concrete types that scala pickling can
generate picklers for. As a solution to this problem, we explore another
alternative called “self-describing” pickles.

Self-describing picklers The idea is to augment the serialized represen-
tation with additional information about how to unpickle. The key is to
capture the type-specific pickler and unpickler when the fully-concrete type
of a Mapped instance is known (at the call-site):

def doPickle[T](msg: T)
(implicit pickler: Pickler[T],
unpickler: Unpickler[T]): Array[Byte] = ???

Essentially, this means when doPickle is called with a concrete type T, say:'*

doPickle[Mapped[List[Int], List[String]]](mapped)

not only a type-specific implicit pickler (a type class instance) is looked up,
but also a type-specific implicit unpickler. These implicit values are carried
along in every function signature of the framework. In other words, implicit
values have to propagate from end-user code to the network API, responsible

" Note that the type arguments are inferred by the Scala compiler; they are only shown
for clarity.
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of the communication with other nodes.'”> The doPickle method could then
build a self-describing pickle as follows. First, the actual message is pickled
using the pickler, yielding a byte array. Then, an instance of the following
simple record-like class is created:

case class SelfDescribing(
blob: Array[Byte],
unpicklerClassName: String

Besides the just produced byte array, it contains the class name of the type-
specific unpickler.' This enables, using this fully type-specific unpickler,
even when the message type to be unpickled is only partially known. All
that is required is an unpickler for type SelfDescribing. First, it reads
the byte array and class name from the pickle. Second, it instantiates the
type-specific unpickler reflectively using the class name (Note that this is
possible on both the JVM as well as on JavaScript runtimes using Scala’s
current JavaScript backend). Finally, the unpickler is used to unpickle the
byte array.

However, this sounds too good to be true. The reality is that the instanti-
ation of the unpickler via reflection is possible in theory, but unfeasible in
practice, due to the way implicit resolution works in Scala. Let’s explain
this in detail with an example. The class Mapped is defined as follows:

final case class Mapped[T, S](
target: Node, // points to the parent node
sp: Spore[T, S], // spore that we're sending over
nodeld: Nodeld // identify the node
) (Amplicit p: Pickler[Spore[T, S]11,
u: Unpickler[Spore[T, S]]) extends Node

Following the previous example, we want to send a node of the lineage repre-
senting a map transformation from List[String] to List[Int]. To serialize
(and deserialize) this Mapped instance, we ask for the picklers and unpicklers
of such concrete type:

val p = implicitly[Pickler[Mapped[List[String], List[Int]]]1]
implicitly[Unpickler[Mapped[List[String], List[Int]]]]

val u

By definition, the serialization code of Mapped depends on the pickler of type
Spore[T, S], which in turn depends on the picklers of T and s.17 Similarly,
when Scala Pickling generates picklers for Mapped, the resulting code dele-
gates to the picklers of the type parameters of the constructor, if any. When
the implicit resolution takes places, it reuses picklers in the scope and binds
to them (Odersky, 2014).

This natural dependency among picklers, that the compiler resolves success-
fully, also manifests itself in the bytecode-level. Implicit parameters in class

5Note that doPickle is only an example and doesn’t represent the interface that would
be invoked by the end-user

16Note that this class name is the fully qualified name of a JVM Class, not a type that
can be known at compile-time.

"The same reasoning applies for the deserialization logic.
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definition are turned into parameters of the constructors, meaning that such
dependency is explicit for the virtual machine that executes the program.
This turns the pickler reflective instantiation impossible: the pickler depen-
dencies are unknown when we unpickle SelfDescribing and, thus, we lose
the ability to invoke the constructor of a class.'®

A possible workaround would be to keep track of the pickler dependency tree
in the serialized message, and reconstruct it in the receiver node. Yet, such
solution assumes that the dependencies would always be of type Pickler
or Unpickler, a claim that relies on how the Scala bytecode generation
works in theory. In fact, the Scala bytecode generator does indeed break
this assumption; instead, when a pickler definition references to more than
one Pickler and Unpickler defined in the outer scope, it uses a reference
to the enclosing scope (be it an object'” or a class). To the best of our
knowledge, there’s not a solution to this problem or, at least, a simple way
to address it that doesn’t depend on the internals of the compiler, prone to
change over time. Due to the lack of a generalized solution, we have decided
not to pursue this path any further. Below, we present a new solution to
this problem.

4.3.8 Caching Picklers at Runtime

So far, we have shown that full static serialization and deserialization is not
possible for generic message types on the receiver’s side. Conversely, the
urge for efficiency prevents us from using runtime-based picklers. In this
section, we present a general solution that reconciles both approaches in an
efficient simple technique.

The key idea is to provide pickler and unpickler templates for every ex-
changed message of the protocol. Templates work for all the Scala types,
being able to handle from simple types to higher-kind types and type con-
structors. They are independent and don’t delegate their logic to other
picklers, stripping out the dependency tree from the executed code. Instead,
they rely on the runtime type information’ (also known as tags) extracted
from the serialized messages.?!

The runtime general form of a type consists in replacing all type parameters
by Any (e.g. List[Int] becomes the more universal List[Any]). This trans-
formation is key—it enables the lookups of pickler and unpickler in a cache
that is populated lazily at boot-time. Unlike previously, the cache contains
templates and it is checked before falling back to pickler runtime generation.

The proposed solution is to cache default pickler and unpickler templates for
every possible used type. Essentially, we're replacing the way we resolve the
dependencies of the picklers. Instead of hardcoding these dependencies in the

18Note that the use of sun.misc.Unsafe.instance.allocateInstance does not solve the
problem. Picklers on which the code delegates will be null.

9By objects we mean Scala object definitions, not instances of classes.

208cala Pickling allows to elide types in the serialized objects when the receiver knows
what it’s expecting to unpickle. This feature must not be enabled for the success of the
solution.

2lFastTypeTags are an important component in scala pickling that represent either con-
crete types at compile-time or general types at runtime.
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generated code, we reconstruct them from the augmented type information
in the serialized message and lookups in a cache. For the previous exam-
ple, this involves providing picklers for Spore[List[Int], List[String]],
List[Int], List[String], String and Int.

In conclusion, this approach ensures (a) that a type that is pickleable using
a type-specific pickler is guaranteed to be unpickleable by the receiver, and
(b) that the efficiency of pickling and unpickling in both sides is roughly the
same, with a small penalty for looking up the cached picklers.

4.4 Extensions to Spores

The programming model makes extensive use of spores, closure-like objects
with explicit, typed environments. While (Miller, Haller, and Odersky, 2014)
has reported an empirical evaluation of spores, the presented programming
model and implementation turned out to be an extensive validation of spores
in the context of distributed programming. In addition, the implementation
required a thorough refinement of the way spores are pickled.

Compile-time metaprogramming in any programming language is hard, since
its fragile interaction with the compiler makes it difficult to achieve full
correctness. The implementation of spores left some room for improvement.
Some of the issues we found were minor (type inference problems, correctness
when dealing with path-dependent types) and, as such, are not discussed in
this paper. However, we discuss in detail the most relevant improvement in
the spores project.

4.4.1 Missing support for Function0

Problem Function® is a trait in the Scala standard library. Any pa-
rameterless function extends it.?? Spores provide implicit conversions from
functions to spores, that essentially extend function objects with spore ob-
jects. As the use of functions is prominent in Scala, one would expect direct
conversion to a spore for any kind of function. As the following example
shows, this is not the case for functions with no parameters.

// Works! There's an implicit conversion!
val f1 = (name: String) => println(s"Hello, name")
val spl: Spore[String, String] = f1

// Doesn't work, no spore@ class and implicit conversion!
val f0 = () => println(s"Hello, Joe")
val sp0: ?2?? = fO

Solution The solution to the issue was rather straightforward, performed
in two steps. First, we added an analogous spore class to Function®, called
NullarySpore. Second, we provided default implicit conversions between
the two. And finally we exposed pickler and unpickler instances for it.

2ZNote that Scala functions are represented as objects.
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4.4.2 Structural Changes in Spores

Previously, at the time of the spore class generation, spores not capturing
anything from the environment extended Spore[T, S] for some concrete
types T and S.

At the type level, it’s necessary to distinguish between a spore that captures
variables from the environment and one that doesn’t. The latter type of
spore is more specific and, therefore, it’s represented as a subclass of Spore.

trait SporeWithEnv[-T, +R] extends Spore[T, R] § ... %

It is conceivable, though, that developers want to have more control when
choosing their spore types, since the super spore type is not explicit enough.??
A compelling situation, for instance, is that of a library designer that wants
their users not to capture anything from the environment. For those cases,
she would use Spore[T,S] $type Captured = Nothing? instead of the old
one.

4.5 Tying Things Together: Pickling Spores

Pickling and unpickling spores is a topic that has been presented in previous
research. The Spores paper (Miller, Haller, and Odersky, 2014) introduces
an extensible type-based mechanism to define custom properties via implic-
its. The capability to serialize and deserialize can be expressed as one of
these properties, as we have already shown in previous sections. Whilst
this thesis explains specific-type picklers and unpicklers, it doesn’t look into
neither runtime pickling strategies nor templates. Once the programming
model implementation settled on using pickler and unpickler templates, such
support was essential. As a result, we incorporated them into the default
existing implementation.

4.5.1 Representing Spores that Capture Variables

The natural distinction between different kinds of types also changes the
pickling and unpickling logic—unlike Spore, SporeWithEnv needs to serialize
and deserialize its environment (the captured variables).

The previous implementation roughly provided this feature. However, most
concrete spore types failed to pick the correct Pickler and Unpickler. Sup-
pose the following situation:

// Define a spore with environment
val captured = 1
val sp: Spore[Int, String] = spore §
val c: Int = captured
(1: Int) =
(i + c).toString
3

23Note that, from an object-oriented perspective, super types also represent concrete
subclasses.
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// Pickle a spore
val p = sp.pickle

The right-hand side of the spore definition assigns a spore of type SporeWithEnv
[Int, String] to a variable sp. However, sp has the type Spore[Int, String].
As the implicit search only takes into account the type signature that triggers

it, it picks the pickler for the super class when, intuitively, should pick the
pickler for the concrete class SporeWithEnv. The fact that implicits do not
fully support type inheritance is not a limitation, but the way it’s supposed

to work.

The aforementioned case occurs frequently when designing interfaces, as
in the case of the function-passing implementation. For instance, the map
method doesn’t know the kind of spore that will receive as an argument.
Thereby, it picks the most general one, Spore.

The proposed solution adds a new level of indirection and has been reworked
from scratch. Special Picklers and Unpicklers are provided for the general
spore type. Nonetheless, those picklers as an intermediate dispatcher that
checks whether the spore to be pickled is indeed an instance of SporeWithEnv.
In that case, a tailor-made pickler and unpickler for that instance is used.
Otherwise, conventional pickling and unpickling takes place. The tests and
experimentation confirm the success of such improvement to pickle and un-
pickle spores, without additional corner cases.

4.5.2 Pickling and Unpickling Spores

The function-passing model implementation assumes shared compilation,
meaning that all the different programs interacting via the programming
model need to be compiled in the same jar. Although this could be regarded
as a limitation, it enables pickling and unpickling spores, a fundamental
feature of the implementation. Below, we explain the relation between these
two seemingly unconnected topics.

The spore macro phase works as follows: whenever it sees a spore, the
macro is expanded and creates a new spore class. That class extends the
inferred spore type and contains the captured variables of the environment.
The identifier of the brand new class is unique; it is created through with
freshName, a method exposed in the Contexrt that takes care of avoiding
name collision.?*

As a result, pickling and unpickling spores is straightforward: send the
unique spore class name and instantiate it on the receiver side through basic
reflection.?® In the case of spores with environments, the captured variables

24Name collision is a typical problem of metaprogramming; macros could define terms
with names that are used in the transformed program, resulting into naming issues at
runtime. To avoid them, the internal implementation increments a counter and merges
its value with the current FQN (fully qualified name)® every time a new fresh name is
created and adds it to the end of the current fully qualified name at the place of the macro
expansion.

26By basic reflection, we mean usual optimized methods of the reflection API like
Class.forName, that it happens to work in both Scala.js and the JVM. For that, it’s
required to have access to the concrete class name.



50 Chapter 4. The Function-Passing Implementation

are also transmitted and set in the instantiated spore.

Why, then, is shared compilation required? Let’s suppose for a moment that
client and server code are compiled separately. The client will successfully
send any message to the server. Those messages contain, among other things,
spores representing the function to be evaluated in the server. When the
server receives one of these spores, it will try to deserialize the spore and fail.
The reason of this failure is that the spore unpickler will get the spore class
name, and that class name does not exist for the server JVM; unfortunately,
it only exists for the client. The only valid approach to this issue is to bundle
up any part of the system altogether and share that jar in order to run it.

Yet, users concerned and constrained by shared compilation are not left at
their fate. Possible alternatives to work around this problem include, but
are not restricted to, several strategies that leverage dynamic class loading.
These techniques have been disregarded because of security and performance
reasons. Omn the one hand, potential attackers would be able to execute
malicious code by carefully creating and loading classes of the expected type.
On the other hand, the use of a secure network protocol and the cost in
message size and class loading ?” would be too much of an overhead for
these systems, that usually run in private inaccesible clusters.

However, when it comes to pickle and unpickle templates, there’s a prob-
lem. On the receiver’s side, the FastTypeTag that contains the necessary
type information for looking up and generating picklers/unpicklers is cre-
ated from the runtime class name (the concrete type is unknown and, there-
fore, AnyPicklerUnpickler is used). Thereby, looking up a cached pick-
ler does not work: the pickler/unpickler template is registered for the type
Spore[Any, Any] and the actual type is the unique compile-time class name.
This problem requires a two-fold solution:

e Include spore type information in the unique class name

e Modify FastTypeTag to specially handle class names that are recog-
nized to be from a spore.

When not pickling and unpickling raw spores, but classes whose class argu-
ments are bound to the general type Spore[Any, Any], this problem disap-
pears.

Realizing these changes in both frameworks has finally enabled a flawless
mechanism that allows proper serialization and deserialization of spores even
if the received message types are unknown.

Dealing with all the spore types

Spore types are complex and sophisticated. Class inheritance is one of the
main responsibles, although type members play an even bigger part in it.
Formally, spore types are either parameterized types (and more concretely,

2"The JVM internally optimizes basic kinds of reflection and class loading is considered
a hot path when the server mode is enabled. Still, some other JVMs do not necessarily
behave in the same way and its support could change in future releases. In addition, class
loading is not for free and could significantly affect performance for a large amount of
received messages.
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function types) or compound types (Odersky, 2014). On the one hand, pa-
rameterized types are type constructors that take other types as parameters
and yield a concrete type. Conversely, compount types contain declaration
and type definitions and they are referred informally as structural types. At
the same time, yype declarations and definitions are also known as [type
refinements].

// Examples of some spore types
Spore[Int, String]

Spore[Int, String] $type Captured = Nothing?
Spore[Int, String] {type Captured = ((String, String), Double)z
Spore[Int, String] ftype Excluded = Nothing}?
Spore[Int, String] {type Excluded = ActorRef?

Spore[Int, String] §ftype Captured
SporeWithEnv[Int, String]
SporeWithEnv[Int, String] §type Captured = Nothingz

SporeWithEnv[Int, String] §type Captured ((String, String), Double)?
SporeWithEnv[Int, String] §type Excluded Nothing?

SporeWithEnv[Int, String] §type Excluded = ActorRef?

SporeWithEnv[Int, String] §{type Captured = Int; type Excluded = String?

Int; type Excluded = String?

As you see, the complexity doesn’t come only from the type parameters of
a function type but type members. This explosion in different combinations
of valid types is remarkable; not only all of them need to be picklable and
unpicklable, but also keep the same semantics in this process, respecting the
natural object inheritance.

Fortunately, the Excluded type member can be safely ignored when gener-
ating pickling code—its main goal is to make the compiler fail under certain
circumstances. Therefore, only the Captured type is necessary. This situa-
tion, this time considerably more manageable, has still required a challenging
implementation.

4.5.3 Shortcomings in the Pickling Design

Previously, we discussed how the server is able to pickle and unpickle generic
messages. Our solution depended on pickler and unpickler templates, that
are self-registered in a dictionary at run time. These templates are objects,
the equivalent of a singleton class.

Singleton classes have special initialization procedures. Other programming
languages like Java make use of the synchronized keyword to ensure that such
classes are thread-safe. Java software developers are required to use the same
“recipe” every time they need singleton classes. On the contrary, Scala pro-
vides this feature by default, allowing the user to define any singleton class
as an object instead of a class. Thereby, Scala deals with the thread-safe and
correct implementation of the object on behalf of the user. Nonetheless, this
implementation imposes some conditions, that may be regarded as beneficial
or perjudicial depending on the use case. These conditions are introduced
because of performance reasons. The most relevant one is the lazy initializa-
tion of objects, meaning that their constructor won’t be executed until the
program explicitly invokes it.
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This is, in the context of Scala Pickling, a drawback. Even though we define
picklers and unpicklers via macros, these are not initialized by default. As a
workaround, Scala Pickling explicitly registers templates which are defined in
the library, such as those for primitive types and Java/Scala collections. But,
in the case of custom user-defined classes, the templates won’t be registered
in the server—the server never gets to initialize the picklers and unpicklers
because it doesn’t use them—, thus its serialization and deserialization would
turn impossible without reflection.

As a consequence, here it comes the only manual task that users of the
function-passing model need to do: every time they want to pickle and
unpickle their own classes, they need to take care of registering them in the
server. In order to do so, they are required to either use the internal API
of Scala Pickling, or invoke methods of the templates. Such disadvantage
is not, however, a unique limitation of Scala Pickling but it is also present
other popular serialization libraries like Protocol Buffers (Google, 2015).
We believe it to be an intrinsic problem of static-based serialization, unlike
reflection-based serialization libraries which are somewhat more general but
far more inefficient.

4.6 Fault Tolerance

Whereas fault tolerance is simplified by design, real-world issues like power or
network failures are not automatically solved by the proposed model. Their
consequences are severe, ranging from data loss to unavailability of systems.
It’s hard to deal with these problems, though; frameworks like Spark and
Akka devote considerable large pieces of code to minimize them.

The function-passing implementation copes with failure in a similar way
as mainstream frameworks. The implementation is heavily inspired by the
fault-tolerant best practices of Akka (Roestenburg, Bakker, and Williams,
2012). This section discusses some of these approaches for the function-
passing model.

Network Failures

Failures in network communication happen when sending commands to re-
mote machines or when receiving their confirmation (or ACK messages).
Spurious errors may affect both directions and are unpredictable.

In order to solve this problem, systems have delivery guarantees. The de-
facto strategy is exactly-once delivery (Huang and Garcia-Molina, 2001),
meaning that a message is only processed once but may have been sent or
received as many times as necessary. A diagram of its behaviour is provided
in Figure 4.3.

In short, nodes send commands among them. In case a command is lost, the
client waits for confirmation during a concrete period of time (customizable
by end-users). After that, the command is sent again until an acknowledge-
ment is received.
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Message lost

ACK lost

FiGURE 4.3: Diagram of a exactly-once delivery,
from (Moyer, 2012).

Nevertheless, is this a valid approach? What if a temporary network latency
problem happens and the server eventually receives two messages, the first
being the duplicate of the second one? It is clear that one cannot ignore this
possibility and leave it to its fate.

To solve it, we introduce the concept of expected id. The expected id is a
counter that is incremented once a message is received. Duplicated messages
with the same id will be rejected because their id is lower than the expected
one. For the previous example, once the first message has been processed,
the counter is incremented and, thus, different to the duplicated message’s
id. Further, messages with higher ids will be stored in memory and its
processing is delayed. This technique is, at the best knowledge of the writer,
known as the ACK-Retry protocol and keeps FIFO semantics (Fraser, 1982),
which are particularly relevant because, then, the original order of the client
code will be executed sequentially.

4.6.1 Power Failures

Power failures are the most severe kind of failures in a distributed system.
They get rid of the machine state and make difficult its later inclusion into
the system. The absence of state unables failed nodes to keep up with their
peers and continue previous communications.

Persistence combats power failures—nodes store any message upon recep-
tion. Messages represent the state of the system and allow to replay the
history of previous transformations over data. When crashed nodes boot,
they check if there’s any previous state. Whether it’s available in a dis-
tributed or local storage, they use it to remember their latest state and be
up for receiving more communications from other nodes. This conforms to
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the idea of single source of truth. It is a common practice for structuring
information models that has been successfully used in real-world distributed
systems (Hammant, 2012; Typesafe, 2014), as well as in distributed log
frameworks (Kreps, 2013).

4.6.2 Dealing with Unexpected Errors

There exists a subset of failures that, yet very very unlikely to happen, can
affect the correctness of the system. Such failure may appear depending upon
transient bugs or the platform on which the system is running. Whereas
there could be ignored, the function-passing model proposes a way to address
them.

It is well-regarded to implement extra high-level reliability layers atop of
distributed systems (Saltzer, Reed, and Clark, 1984), even though low-level
network protocols implement their own. The rationale behind this reasoning
is that when application make an extended use of the IO layers, they cannot
blindly rely on them, expecting them to work correctly, because one day they
won’t. While it’s unlikely that low-level failures occur, they are not negligible
and account for a significant amount of real-world errors, e.g. buffer-copy
errors that may switch over bytes of messages. Consequently, the function-
passing implementation adds a checksum to every exchanged message, and
checks upon reception that they match with the checksum of the message
contents.

The handling of power failures 4.6.1 and unexpected errors 4.6.2 has been im-
plemented out of the project schedule because of timing issues, while working
around network failures 4.6 has been successfully implemented on time.

4.7 Memory reclamation

The Java Virtual Machine is known for encouraging software developers
to avoid memory management by providing a default garbage collector—
developers just write their programs without directly dealing with heap allo-
cations and deallocations.?®. The success of this approach has revolutionized
the industry. Garbage collectors are a must in the toolbox of any modern
programming language that wants to succeed. They make easier software
development at a small cost in performance, and developers are willing to
pay this price.

The function-passing model stands under the same motto. In a similar way,
it wants to provide safe guarantees, performance and ease of use for data
analysts and developers, even though sometimes there’s a price. Immutable
Silos pose a problem for memory management. As data transformations
are persisted in a dictionary and indexed by their silo identifiers, their ref-
erences are never nulled out.?? Thus, the JVM Garbage Collector does not

28In fact, only a few limited APIs allow direct access to low-level memory operations,
and some rumours confirm their removal in future releases of the Oracle JVM (Beckwith,
2016)

29There always exist a reference to these objects in the running programs.
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recognize unused silos as garbage and they may pile up in memory until an
OutOfMemoryException is thrown.

As a consequence, one has to explicitly deal with all these intermediate silos
that float around memory. While this is still a field of active research at the
time of this writing, we have found out two sensible user-friendly approaches
to this problem:

o The first approach uses Java’s WeakReferences (SE, 2012b) and Soft-
References (SE, 2012a) to detect when a SiloRef is no longer reachable
from local GC roots. Upon detection the host of the corresponding silo
is notified to decrease the silo’s reference count; the host’s reference(s)
to the silo are nulled out when the reference count reaches zero. It
is important to note that this strategy requires notifying a silo’s host
whenever a SiloRef to the silo reaches a new machine, to increase the
silo’s reference count. This notification could be automated via macros;
since the judgment of when a silo is useless can be inferred from the
client’s code at compile-time, macros could extract and process this in-
formation, removing the burden of providing explicit silo information
to hosts. The proposed approach enables the JVM to automatically
collect objects pointed by WeakReferences and SoftReferences when
memory resources are scarce, even if they are still “used” /referenced
in the program. Note that such solution doesn’t pose a problem to
end-users—silos could be recomputed from their lineage.

o The second approach leverages uniqueness types in Scala (Haller and
Odersky, 2010). Here, SiloRefs are locally unique, and the programmer
can explicitly declare a SiloRef as unused; the type system ensures that
such an “unused” SiloRef is not used again subsequently. As in the first
approach, upon marking a SiloRef as unused, the corresponding silo’s
host is notified to decrease the silo’s reference count.

As a future extension, the function-passing model will also be able to behave
as Spark does: dumping and loading data from disk when there’s not enough
free memory available.

4.8 Extensibility of the function-passing model

The described implementation may sound limited for some use-case scenar-
ios. The reality is that the proposed programming model does not aim at
covering all of them. However, it does provide a minimum set of primitives
that allow further extensibility of the model.

The Scala programming language is known for providing primitives for asyn-
chronous operations by default in the standard library, whose main elements
are Futures and Promises (Haller et al., 2012). Thus, the function-passing
model, which uses them for any operation througout the framework, is by
definition extensible; potential users may build atop of it and benefit from
its seamless integration with other future-based libraries, because the key
idea behind Futures is composability.

As a conclusion, there is no natural limitation in the function-passing model.
For instance, advanced users would be able to share SiloRefs among different
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nodes just by storing them to distributed databases or message brokers like
Redis, ZeroMQ, or RabbitMQ.


http://redis.io/
https://zeromq.org
http://www.rabbitmq.com/
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Chapter 5

Conclusion

We have presented the function passing model, a new programming model
and new substrate or middleware upon which to build data-centric dis-
tributed systems. This enables two important benefits for distributed sys-
tem builders; since (a) all computations are functional transformations on
immutable data, fault-tolerance is made simple by design, and (b) commu-
nication is made well-typed by design, the function passing model attempts
to more naturally model the paradigm of data-centric programming by ex-
tending monadic programming to the network.

In addition, we have gone in detail through the two previous veins of work
that have enabled the presented programming model: Scala Pickling and
Spores, and explained how they interact with each other. We then discussed
fundamental issues of these projects and our proposed solutions, whose re-
sult has made the cross-platform implementation of the function-passing
model possible. Therefore, uniting functional programming and distributed
computing in a pure setting. The novelty of this implementation is its inter-
operability with both JVM-based programming languages and JavaScript.

Finally, we have shown our approach to efficiently pickle and unpickle func-
tions in Scala, even if the function type is only known at runtime. It combines
compile-time and runtime generated picklers, along with runtime pickler and
unpickler caches. The success in this task has allowed us to implement differ-
ent popular patterns of distributed processing atop our programming model,
such as batch processing with Spark’s RDDs and MBrace’s cloud-based asyn-
chronous tasks.
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Appendix A

Implicits in Scala

Implicits are a powerful mechanism in Scala for scraping boilerplate. The
general idea is to allow the compiler to help software developers write less
code. The compiler allows them to define “special” values that will be placed
in certain places of the program on behalf of the user. The compiler is
guaranteed to choose the most specific type for that value based on the
guarantees of the place that requests it. In order to understand how they
work, let’s start by the implicitly method.

The implicitly method, part of Scala’s standard library, is defined as fol-
lows:

def implicitly[T](implicit e: T) = e

That is, request an implicit value of type T as a parameter and return it.

Annotating the parameter (actually, the parameter list) using the implicit
keyword means that in an invocation of implicitly, the implicit argument
list may be omitted if, for each parameter of that list, there is exactly one
value of the right type in the implicit scope. The implicit scope is an adap-
tation of the regular variable scope; imported implicits, or implicits declared
in an enclosing scope are contained in the implicit scope of a method invo-
cation.

As a result, implicitly[T] returns the uniquely-defined implicit value of
type T which is in scope at the invocation site. In the context of picklers,
there might not be an implicit value of a certain type in scope. In that case,
a suitable pickler instance is generated using a macro def.

Implicit conversions. Implicit conversions can be thought of as methods
which can be implicitly invoked based upon their type, and whether or not
they are present in implicit scope. Implicit conversions carry the implicit
keyword before their declaration. The greeting method is provided using
the following implicit conversion:

implicit def normalToRichConversion(i: Int): RichInt =
new RichInt(1)

class RichInt(i: Int) §
override def greeting(): String =
"Hello, I am a rich Int"
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// What developers usually do
println(RichInt(1l).greeting)

In a nutshell, the above implicit conversion is meant to implicitly invoke
RichInt, wrapping any Int whenever the greeting method is invoked. The
above example shows a synthesized and less verbose code that simulates the
previous behaviour:

// The compiler wraps 1 with ‘new RichInt()‘
println(l.greeting)

Implicit classes. The success of implicit conversions and its widespread
adoption in the Scala projects inspired new features that aimed at simplifying
the use of implicits. Among them, implicit classes marry the worlds of classes
and implicits once and for all.

Instead of separate implicit conversions and class definitions, one could ex-
press the same example as:

implicit class RichInt(i: Int) §
override def greeting(): String =
"Hello, I am a rich Int"

where the implicit keyword has been moved to the beginning of the class
definition. Due to its usefulness, it’s become a popular Scala idiom that
reduces boilerplate.
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Appendix B

Macros: Compile-Time
Metaprogramming in Scala

Compile-time metaprogramming is a technique that allows algorithmic con-
struction of programs at compile-time. It’s often used with the intent of
allowing programmers to generate parts of their programs rather than hav-
ing to write these program portions themselves. Thus, metaprograms are
programs who have a knowledge of other programs, and which can manipu-
late them (Burmako, 2013b).

| Macro expansion |

U

| Transformed program

FIGURE B.1: Describes the usual compiler pipeline when
macros are enabled.

When a macro is invoked, it exposes internals of the Scala compiler API,
thereby allowing us to manipulate and transform expression trees (ASTS).
An illustration of the usual compiler pipeline is described in Figure B.1.
There are many different flavors of Scala macros, which enable manipulation
of types as well as terms. In this appendix, only the most basic form of
macros are explained, def macros.

Def macros are methods whose calls are expanded at compile-time. An
expansion is a transformation into a code snippet (usually in the form of
a method) and its arguments. When macros are expanded, they operate
with a Context that exposes the code to be expanded and an interface to
interoperate with Scala ASTs. Imagine that one want to create a smart
assert function that is able to fail compilation when some objects are not
of the same type.! This is a traditional problem that can be solved by def
macros:

def assert(cond: Boolean, msg: String) = macro assertImpl

def assertImpl(c: Context)(cond: c.Tree, msg: c.Tree) = §

!Note that equals is extended by the class Object which, in turn, is extended by any
Java and Scala class.
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// Import the compiler universe
import c.universe._

// Continue the implementation
2?7

In the above example, there’s a macro definition and macro implementa-
tion. The assert method expands the macro, that executes the body of
assertImpl at compile-time, manipulates its arguments and produces a tree.
Such tree will replace the initial invokation of assert and will be executed
at runtime.

Macros have enabled countless opportunities of automating tasks, removing
boilerplate and creating DSLs. Without them, projects like Scala Pickling
and Spores would have been unconceivable. In order to illustrate how Scala
Pickling makes use of macros, let’s have a look at the following example:

/* Framework code */

// Define a simple pickler interface
trait Pickler[T] § def pickle(x: T): String %
def pickle[T](x: T)(implicit ev: Pickler[T]) = ev.pickle(x)

// Declare a macro that will generate the pickling code for a type T
implicit def generatePickler[T]: Pickler[T] = macro ...

/* User code */

// Define a person and pickle an instance
case class Person(name: String)
pickle(Person("Jorge"))

First, we generate a Pickler and a pickle method that asks for an implicit
of Pickler[T]. Then, we define an implicit conversion that provides any
pickler for any given type T.? As there is an implicit conversion in scope that
provides such type, the Scala compiler selects it and transforms the last line
into:

pickle(Person("Jorge")) (generatePickler[Person])

However, generatePickler is a macro definition that will be expanded by
the compiler. After macro expansion, the resulting code will be similar to:

pickle(Person("Jorge")) (new Pickler[Person] §
def pickle(x: Person): String = 2?7

k)

The above explanation describes superficially how the framework actually
works. For more information about macros, see (Burmako, 2013b), (Bur-
mako, Shabalin, and Odersky, 2013) and (Burmako, 2013a).

2 Actually, this is an oversimplification of what Scala Pickling does. It’s impossible to
generate pickling code for any type of object. When Scala Pickling detects this unfeasibil-
ity, it will fail with a compiler error at the call-site of the macro expansion.
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