
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tjde20

Download by: [Universitat Jaume I] Date: 13 October 2016, At: 04:14

International Journal of Digital Earth

ISSN: 1753-8947 (Print) 1753-8955 (Online) Journal homepage: http://www.tandfonline.com/loi/tjde20

A domain-independent methodology to analyze
IoT data streams in real-time. A proof of concept
implementation for anomaly detection from
environmental data

Sergio Trilles, Òscar Belmonte, Sven Schade & Joaquìn Huerta

To cite this article: Sergio Trilles, Òscar Belmonte, Sven Schade & Joaquìn Huerta (2016): A
domain-independent methodology to analyze IoT data streams in real-time. A proof of concept
implementation for anomaly detection from environmental data, International Journal of
Digital Earth, DOI: 10.1080/17538947.2016.1209583

To link to this article: http://dx.doi.org/10.1080/17538947.2016.1209583

© 2016 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 29 Jul 2016.

Submit your article to this journal

Article views: 188

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tjde20
http://www.tandfonline.com/loi/tjde20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17538947.2016.1209583
http://dx.doi.org/10.1080/17538947.2016.1209583
http://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/17538947.2016.1209583
http://www.tandfonline.com/doi/mlt/10.1080/17538947.2016.1209583
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2016.1209583&domain=pdf&date_stamp=2016-07-29
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2016.1209583&domain=pdf&date_stamp=2016-07-29

A domain-independent methodology to analyze IoT data streams
in real-time. A proof of concept implementation for anomaly
detection from environmental data
Sergio Trillesa, Òscar Belmontea , Sven Schadeb* and Joaquìn Huertaa

aInstitute of New Imaging Technologies, Universitat Jaume I, Castelló de la Plana, Spain; bEuropean Commission –
Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy

ABSTRACT
Pushed by the Internet of Things (IoT) paradigm modern sensor networks
monitor a wide range of phenomena, in areas such as environmental
monitoring, health care, industrial processes, and smart cities. These
networks provide a continuous pulse of the almost infinite activities that
are happening in the physical space and are thus, key enablers for a
Digital Earth Nervous System. Nevertheless, the rapid processing of these
sensor data streams still continues to challenge traditional data-handling
solutions and new approaches are being requested. We propose a
generic answer to this challenge, which has the potential to support any
form of distributed real-time analysis. This neutral methodology follows a
brokering approach to work with different kinds of data sources and uses
web-based standards to achieve interoperability. As a proof of concept,
we implemented the methodology to detect anomalies in real-time and
applied it to the area of environmental monitoring. The developed
system is capable of detecting anomalies, generating notifications, and
displaying the recent situation to the user.

ARTICLE HISTORY
Received 26 April 2016
Accepted 1 July 2016

KEYWORDS
Big data; real-time analysis;
data streams; sensor
networks; interoperability;
brokering approach

1. Introduction

Huge amounts of wireless sensor networks (WSNs) measure almost every possible environmental
and man-made phenomena. We can witness some of these networks for different monitoring pur-
poses in our daily lives, e.g. for environmental monitoring (meteorological, air quality, noise, etc.),
smart cities (smart parking, smart light, etc.), health-care monitoring, industrial monitoring or social
(media) sensing. Each sensor in each network produces a stream of data and – depending on the
particular refresh time –may deliver huge amounts of observations which will sum up those coming
from the other sensors in the network.

The Internet of Things (IoT) (Kortuem et al. 2010) paradigm has allowed these WSNs to be con-
nected to the Internet using the Transmission Control Protocol/Internet Protocol (TCP/IP), and
their access tends to get open for everybody. Also, IoT allows finding and retrieving observations
in large quantities and establishes a direct connection to WSN.

With these capabilities, we are indeed approaching a Digital Earth Nervous System, as envisaged
by De Longueville and others in 2010. However, it becomes difficult to analyze all these observations

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT Sergio Trilles strilles@uji.es
*The views expressed are purely those of the author and may not in any circumstances be regarded as stating an official position of
the European Commission

INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016
http://dx.doi.org/10.1080/17538947.2016.1209583

http://orcid.org/0000-0002-0121-0697
http://orcid.org/0000-0002-8625-441X
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:strilles@uji.es
http://www.digitalearth-isde.org/
http://english.radi.cas.cn/
http://www.tandfonline.com

in the moment that the raw values are obtained (Manovich 2012). In other words, although
Khan et al. (2016) conclude that there are initiatives to improve the processing capabilities, we
still miss that to benefit from such a nervous system. In order to implement the Digital Earth vision,
we miss an approach that overcomes the heterogeneity and lack of standards of the IoT and enables
us to access and process new dynamic data streams from private and public sector in real-time.

In this paper we introduce an approach to analyze the arising flood ofmonitoring data.We describe
amethodology and an associated system architecture to analyze observations from diverse sensor net-
works at the time they are produced. The capabilities of the proposed solution are tested and show-
cased in an application that detects anomalies from environmental sensor networks in near real-time.

The resulting system is based on the latest techniques to quickly handle large amounts of
streamed data, which guarantees that all data will be fully processed and any kind of algorithm
over the data stream can be applied. We extend and provide a generalization of our previous
work (Trilles et al. 2015), so that the overall solution can be applied to any type of sensor network
on the Web. Compared to already existing approaches, new contributions include (1) different tools
to connect with sensor data sources regardless of the type of data; (2) the ability to analyze large
amounts of sensor data in real-time; (3) a mechanism to transform non-standard sensor data to stan-
dard formats; (4) the ability to connect with different protocols by means of a brokering solution; and
(5) a framework to serve any sensor data analysis in real-time with different protocols.

2. A methodology for the analysis of the sensor data streams

The proposed methodology processes (big) data produced by sensors in real-time. This methodology
can be considered flexible and compatible because (1) works with different sensor data sources with
different formats and connection interfaces; (2) allows processing large amount of observations pro-
vided by sensors in real-time; (3) allows for the application of any kind of analysis; and the defined
methodology can be defined as standard-compliant; and (4) provides the results using standards and
offers different protocols to connect with them.

Figure 1 presents an overview of the proposed methodology. It distinguishes three layers: content
layer (Section 2.1), services layer (Section 2.2), and application layer (Section 2.3).

2.1. Content layer

The designed methodology is intended to work with sensor data. It can be applied to any kind of
phenomena, such as meteorological (air temperature, air pressure, humidity, etc.), air quality

Figure 1. Agnostic overview of the presented methodology to analyze sensor data streams.

2 S. TRILLES ET AL.

(CO2, CO, PPM, etc.), health (pulse, blood pressure, etc.), or smart cities (smart parking, smart light,
etc.). The system considers any data stream as a series of observations that are produced at sensing
nodes. Each sensing node has a different refresh rate to generate new observations, may apply differ-
ent sensors and could measure diverse phenomena. Each sensor produces a stream with obser-
vations, which can be either qualitative or quantitative in nature.

Figure 2 illustrates how different sensor streams form a sensing node. A set of the sensing nodes
create a WSN. The content layer may comprise one or more of these WSNs.

2.2. Services layer

The services layer connects to the sensor data sources, analyzes the observations and provides the
results. We open individual channels to each sensor in order to obtain a data stream for each
one. We developed a separate component called real-time message service (RMS) (Section 2.2.1),
which encapsulates a set of communication protocols and enables real-time data access. Section
2.2.2 details the connection to sensors of different kinds and the translation to a standard data
model where required. The various sensors may support different communication protocols and
interfaces for real-time data handling. In a subsequent brokering step (Section 2.2.3), the multiple
protocols are harmonized so that standardized data can be processed using a single communication
mechanism. After applying the actual processing algorithms (Section 2.2.4), we deliver the results as
a dynamic data stream (Section 2.2.5) by re-using the RMS.

2.2.1. Real-time message service
The proposed methodology handles observations in (near) real-time, i.e. new values should be pro-
cessed as soon as they become available on the Internet. Traditionally, web-based resources are
accessed by Hypertext Transfer Protocol requests to a server, which then responds by returning
the requested resource (classical request–response communication). This procedure has to be
repeated every time that the client wants to access the resource. When dealing with data sources
with the highest refresh rates – such as stock price or environmental sensor data – the server has
to be requested (almost) constantly in order to remain updated. More effective and efficient
approaches have been developed to address such issues. They are based on polling mechanisms,

Figure 2. Different sensor steams form the sensing nodes and the WSNs.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 3

where the client repeatedly sends new requests to the server. If the server has no new data, then it
sends an appropriate indication and closes the connection. The client then waits before sending
the next request.

We apply this approach in order to transfer sensor observations inside the RMS. RMS is used in
different parts of the services layer, in order to prepare the sensor streams in the sensor data stream-
ing (SDS) (see Section 2.2.2). It will be re-used to deliver the analysis results (see Section 2.2.5).

The RMS can be realized with Message-Oriented Middleware, such as, for example, the Java
Message Service (JMS) (Hapner et al. 2002), and should incorporate a whole series of Message Bro-
kers, such as Apache ActiveMQ,1 Apollo,2 HornetQ,3 RabbitMQ4 and Kafka.5 The use of such a suite
of tools maximizes the flexibility in terms of supported protocols (i.e. being able to exchange mess-
ages with many diverse data sources and users) and transferred messages (i.e. being able to under-
stand the content of many diverse data sources and being understood by multiple users/clients).

Our work applies two theoretical concepts of Message-Oriented Middleware:

. Point-to-point model: in this model, the Messages are routed to an individual.

. Consumer which maintains a Queue of ‘incoming’ Messages.

. Publish/subscribe model: this model supports publishing Messages to a particular Message Topic.
Subscribers may register interest in receiving Messages on a particular Message Topic.

In addition, the following JMS concepts are used in this work:

. Provider: an implementation of the JMS interface for a Message-Oriented Middleware.

. Client: an application or process that produces and/or receives Messages.

. Producer/Publisher: a Client that creates and sends Messages.

. Consumer/Subscriber: a Client that receives Messages.

. Message: a Message can be any object or data that need to be transported using JMS.

. Queue: a staging area that contains Messages that have been sent and are waiting to be read (by
only one Consumer). A Queue only guarantees that each Message is processed only once.

. Topic: a distribution mechanism for publishing Messages that are delivered to multiple
Subscribers.

2.2.2. Sensor data streaming
The SDS component offers two functionalities. First, the SDS connects with different sensors to
obtain observations. Since most publicly available WSNs do not offer standard access to the data
that they produce (Trilles et al. 2014), Extract, Transform and Load (ETL) processes translate the
original non-standard data formats to a standard one. In order to facilitate this work and to reuse
existing tools, we contemplate three categories of WSNs depending on the data formats that they
support: structured WSNs, semi-structured WSNs, and non-structured WSNs. We will detail
these categories in Section 4.1.

As Figure 1 shows, the ETL process has two steps. The first step, data sources connectors, is
responsible for extracting the sensor data from the different data sources. As mentioned earlier,
different natures of sensor data are considered, and in this way the SDS performs as a broker (Busch-
mann et al. 1996). As structured and semi-structured types of sensor data have to be processed, the
SDS needs to be able to connect to data sources that use diverse formats and understand different
protocols. In other words, it needs specific connectors for each data source. For the standard
WSNs, a single connector can be reused for different WSNs that follow the same approach. For
other sensor data sources, a specific connector is needed for each source to obtain the particular
observations that it produces. This step requires several parameters that are specific for each data
source. This includes information about the connection with the sensor data source itself, as well
as the sensor refresh rate that is required to obtain new observations as soon as they become

4 S. TRILLES ET AL.

available. In the second step, standard transformations are applied in order to obtain interoperable
sensor data. A process transforms each observation that is provided by a non-standard source to a
standard format.

Finally, the SDS creates the different data streams using the RMS component. For this process, a
Message Broker with the Point-to-pointmodel is used (Figure 3), so that it ensures completeMessage
delivery to the Consumer. This step results in one stream (Queue) per sensor and sensing node.
Figure 3 illustrates this particular use of the RMS.

2.2.3. Brokering approach
In order to access data from sources that use different communication protocols and message encod-
ings, we apply a brokering approach (Buschmann et al. 1996; Nativi, Craglia, and Pearlman 2012) at
the service layer. Figure 4 shows how a broker allows clients to connect with data sources by using
multiple protocols. This capability to interact with multiple sources increases the systems flexibility,
scalability, and interoperability. Our proposed methodology uses brokering in order to connect with
the RMS. It thereby enables the use of different RMS instances – each of which might operate on a
different protocol.

The methodology offers connection nodes (Figure 1 blue circles) to different RMS protocols,
which are called Connector RMS, as a Consumer role. Thus, each node provides a client that is
able to connect with the different supported protocols. The current implementation of the broker
only offers connection with different protocols, it does not support multiple data formats, because
the SDS is supposed to work with a standard format. Each Connector RMS establishes a connection
between different sensor streams provided by different RMS’s. In this way, the observations are
obtained as they are acquired. Finally, these nodes forward the retrieved observations to the algor-
ithms inside the next processing step.

2.2.4. Application of algorithms
The presented methodology permits any algorithm to be performed on the observation series. These
algorithms are codified as different nodes in order to allow parallel computation (see also Figure 1).
The outputs of each single node can be transferred to subsequent nodes, thus enabling interconnec-
tivity between algorithms, or being delivered as system output. The algorithms have to adapt them-
selves to the nature of data provided by the data source before applying the entailed analysis step. The
use of standards for the sensor streams eases the data preparation for the analysis. Depending on the
kind of analysis, the algorithm may have different kinds of outputs.

Figure 3. Point-to-point model.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 5

It is important to keep in mind how observations are propagated between the algorithms inside
the systems workflow. As we are dealing with data streams, the position of each observation within
respect to the other elements of the stream is essential. Depending on the type of analysis, the system
may need to preserve the order of all observations inside the same data stream. Our methodology
guarantees that all observations of each stream will be analyzed, and offers the possibility to keep
the order in which the single elements are processed.

2.2.5. Delivery of results
The algorithms may, for example, extract knowledge about anomalies from the (big) data inputs and
provide (small) data (Mayer-Schönberger and Cukier 2013) that can be easily visualized. Depending
on their type, these outputs can be encoded using the most appropriate standard. The RMS is used to
improve the interoperability, offering a variety of communication protocols. For this purpose, the
RMS is applied with a publish/subscribe model which allows several clients (subscribers) to connect
to a particular output stream and to get notified if appropriate. Figure 5 shows an example where the
RMS provided has outputs per sensor and sensing node.

2.3. Application layer

In order to create reusable clients, the services layer offers a variety of communication protocols and
standard formats. These features allow creating clients that can be used in different scenarios. The
application layer connects with this final part of the service layer and more specifically with the RMS.

3. Real-time event detection using the CUSUM algorithm

We tested the methodology, which was detailed in the previous section, using an algorithm for the
anomaly detection over environmental sensor data. As soon as an anomaly is detected, a notification
has to (1) trigger a decision-making process, and (2) inform about the anomaly that caused the event,
together with surrounding context information. In many cases, this support has to be provided in
(near) real-time because decision-making is time-critical.

We selected the CUmulative SUM (CUSUM) (Page 1954) algorithm for detecting anomalies in
data series from environmental monitoring. This algorithm can be applied to any series of values

Figure 4. Conceptual brokering approach.

6 S. TRILLES ET AL.

and detects anomalies in real-time. In essence, it compares two different instances of the same dis-
crete probability function for a data series (Mesnil and Petitgas 2009).

3.1. Past usages of the CUSUM algorithm

The CUSUM algorithm was initially developed for industrial process control purposes. In recent
years, it has been successfully used in other areas. In Osanaiye and Talabi (1989), the algorithm is
used to detect possible outbreaks of epidemics. Grigg, Farewell, and Spiegelhalter (2003) analyzed
the 30-day mortality for patients after cardiac surgery. Furthermore, CUSUM is used to improve
the communication in WSNs. In Jeske et al. (2009), authors developed two CUSUM change-point
detection algorithms for data network monitoring applications. CUSUM has additionally been
used in pattern recognition, specifically in neural networks. A sample of these can be found in
Guh and Hsieh’s (1999) study where it proposes an artificial neural network-based model, which
contains several back propagation networks. Chuen-Sheng (1995) describe an alternative approach
for statistical process control, using artificial neural network technology and compares its perform-
ance with that of the combined Shewhart-CUSUM schemes. CUSUM has already been successfully
used for a number of environmental problems (Charles and Jeh-Nan 2002; Carslaw, Ropkins, and
Bell 2006; Barratt et al. 2007; Chelani 2011).

Following these successful examples, we decided to use CUSUM as part of our anomaly detection
system. In our implementation example (Section 4), CUSUM is applied to detect anomalies of air
pollutants. The accuracy of this algorithm has been tested in the previous mentioned works.

3.2. Description of the CUSUM algorithm

CUSUM considers a set of observations (xi) with collected observation i = 1,… , n, where n is the
number of data points. The algorithm assumes that these observations are in-control when the col-
lection has a mean (µ) and variance (σ2) for a normal period and following a normal distribution N

Figure 5. Publish/subscribe model.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 7

(µ, σ2). When the process is in-control, we can obtain the CUmulative SUM (Si) in an iterative way
through the following expression:

Si = Si−1zi, (1)

where S0 = 0, zi is the standard normal variable, zi = (xi − �x)/s, x̄ is the mean and s is the standard
deviation of the time series. Furthermore, the change in terms of increased or decreased process
mean can be detected, respectively by computing the quantities as (Lucas 1982

SHi = MAX[0, (zi − k)+ SHi − 1],

SLi = MIN[0, (zi + k)+ SLi − 1],
(2)

where the parameter k is the reference value to be appropriately chosen. The parameter, k, is the
allowable ‘slack’ in the process and is usually set to be one half of the mean one wishes to detect. The
confidence limits (threshold) specified for the CUSUM control charts are hσx, where h = 5 and σx is
the standard deviation (Barratt et al. 2007).

When SHi or SLi overcome the threshold, the algorithm detects anomalies. If SHi exceeds the
threshold the anomaly will be due to the increase (up-event) and if SLi is greater than the threshold,
it will be due to the decrease (down-event).

Two characteristics of CUSUM limit the sensitivity of the results. First, the identification of an
out-of-control process relies on the assumption that readings are statistically independent and follow
a normal distribution. Second, sensory phenomena measurements can have some seasonality and
long-term trends. The effect that this has is that the threshold may be out of adjustment.

4. An environmental anomaly detection system

We proof the conceptual design of our methodology by implementing a system to detect anomalies
over environmental sensor data. Figure 6 summarizes all technologies used for each part of the sys-
tem. It proposes a specific technology for the domain-independent methodology presented in Sec-
tion 2.

4.1. Content layer

As indicated in Section 2.1, the proposed system supports the three following types of sensor data
sources, depending on the structural characteristics of the data format:

Figure 6. Technological overview of the proof of concept to detect anomalies.

8 S. TRILLES ET AL.

. Structured WSN: within this category there are two subcategories. In the first subcategory, the sen-
sor data sources are provided in standard sensor formats, for example, using the Sensor Obser-
vation Server (SOS) of the Open Geospatial Consortium (OGC). In the second subcategory,
the sensor data sources themselves follow a standard format encoded with a structured format,

. such as really simple syndication (RSS). Our proof of concept uses the 52 North6 implementation
of an SOS and Meteoclimatic7 to support RSS.

. Semi-Structured WSN: in this case, a sensor data source is encoded in a semi-structured format,
such as the HyperText Markup Language (HTML). We use an example of this type, the air quality
network of the Valencian Community government,8 in order to test the proposed methodology.

. Non-Structured WSN: in this case, sensor data sources do not follow any structure. The SEnviro
network (Trilles et al. 2015) provides an example of this type of WSN. SEnviro provides low-cost
environmental sensors based on the Arduino platform.9 The sensor data are provided directly
from the SEnviro nodes.

To test our methodology, we have chosen a semi-structured air quality sensor network provided
by the Valencian Community’s government. As earlier commented, to use the CUSUM algorithm we
need two parameters (threshold and k) per sensor that our system analyses. We obtain these par-
ameters from historical data from the presented data source. One year of historical data (1 January
2013 to 31 December 2013) was used for this purpose.

4.2. Services layer

We also implemented a proof of concept for the services layer. Section 4.2.1 shows the framework
used to create an RMS instance. The next section (Section 4.2.2) presents the implementation of
the SDS. The Section 4.2.3 details the framework used between the current available solutions in
order to analyze the sensor data.

4.2.1. Real-time message service
For the RMS component, we used a JMS framework called ActiveMQ. To connect with ActimeMQ,
we provide a Client using the Simple (or Streaming) Text-Oriented Message Protocol (STOMP);10 it
can behave as Producer or Consumer. This client offers two different connection models: Point-to-
point model, and Publish/Subscribe (Section 2.2.1). It was used in the different detailed components
to connect with the RMS.

4.2.2. Sensor data streaming
As earlier commented (Section 2.2.2), the SDS uses an ETL process in order to connect and standar-
dize sensor data sources. Following Figure 6, the ETL process is split into two steps. In the first step,
we have two different components, wrappers and SOS client, that depending on the structure of the
data source, the connection is established by one of these two components. For sources that already
comply with OGCs SOS standard, we developed an SOS client that implements the operation
getobservationbyId in order to retrieve the last observation of each sensor. For all other sources,
we require a tailor-made connector. Following our previous work (Trilles et al. 2014), we create a
particular wrapper for each of these cases. In this way, this component is responsible for connecting
and processing the data for storage. It allows the system to scale by adding new data sources. For this
task, this wrapper component uses web scraping techniques to extract the observations from each
sensor and it is adapted for each kind of data structured. This module uses some libraries to analyze
this data source and to extract each observation. Both the wrapper component and the SOS client
adapt the frequency to the frequency of publication of each data source. Finally, the sensor
observations obtained by these components from each sensor are applied to them to the real-time
interfaces of the RMS.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 9

SOS clients as wrappers need to perform the connection using different parameters. For this to occur,
we need to know the refresh rate and the uniform resource locator (URL) to access each sensor. A cus-
tom XML file is used to store these parameters. It contains a single entry to define the sensor network; it
also contains details about each sensing node: an identifier, name, and city, state, or location. The sensing
node entry includes a separate element for each sensor that is measured by the sensing node. Each of
these elements contains details about the measured phenomenon: an identifier, observed property,
unit of measure, and refresh rate. It also contains the parameters that are needed to run the CUSUM
algorithm (threshold and k). Finally, each sensory phenomenon also contains the URL to connect
with the sensor data source and the URL to the sensor data stream to connect with the RMS.

Now the SDS standardizes the observation encoding and access. A transformation is applied each
time when the system receives a new observation. Each transformed observation is encoded in line
with the according OGC standard for Observations and Measurements (O&M) (Cox 2007) using a
DOM (Document Object Model) parser.

In order to connect with the RMS and to provide an observation stream for each sensor, the Client
has been used as a Producer. The produced observation is sent to the corresponding Queue (stream)
– one Queue per sensor and sensing node. Figure 3 shows this use of the RMS. In this case, we apply
the Point-to-pointmodel of RMS, because it ensures that the Consumer will get all theMessages pro-
duced. Another XML file is created to define the settings to connect with the sensor streams. This file
offers the URLs and the protocol type when the stream is available.

4.2.3. STORM topology
Solutions for real-time data analysis are already available, examples include Storm, S4, Samza, Bor-
ealis, MillWheel, and many more. For this study, we used Storm because it is one of the most used
and offers a wide sample of examples. It is used as a single component to perform the brokering and
analysis steps. This part of our developments is based on the Storm framework, which distributes
processed unbounded streams of data in real-time.

With this novel application of the Storm framework to the IoT, we are able to analyze multiple
streams (with different protocols) and apply dedicated anomaly detection algorithms to them. With
the choice of this technology, the scalability is assured. Storm can reach rates of even one million 100
byte messages per second per node,11 and allows large clusters of more than 2000 nodes12 to be tested.

The brokering behavior is provided within the RMS connectors (see Section 2.2.3). These are
implemented using different Storm Spouts for each supported Message Broker protocol. This increases
the interoperability of the system by supporting multiple protocols and allowing different RMS
instances to be applied. For our broker, we implemented four different Spouts, each supporting a differ-
ent Message Broker protocol. We selected the four protocols that are most widely used: Stomp, AMQP,
MQTT, and Kafka. Each Storm Spout is developed as a Consumer, in order to connect each of them
with the different RMS available and obtain the sensor observation from the different streams.

Storm offers an at-least-once processing guarantee, but does not consider the order in which data
streams are emitted. In fact, the tuples will have a different order when they are processed. To achieve
the objectives set out, the order of tuples must be maintained .We use Trident13 to ensure this. Tri-
dent is a high-level abstraction framework for computation on Storm. As with the core Storm appli-
cation programming interface (API), Trident uses Spouts as the source of data streams. It has
consistent, exactly once semantics (same order), so it is easy to reason about Trident Topologies
usage. It already offers different operations, such as functions, filters, and aggregations from streams
of tuples.

The analysis step is implemented using Storm Bolts. Inside each Bolt we can apply any analysis
algorithm. We developed a Bolt with the CUSUM algorithm. This Bolt is in charge of applying
CUSUM to the series of tuples that are provided by the different Spouts. In order to execute the
CUSUM algorithm on each phenomenon-specific measurement stream (as described in Section
4.2.2), we separate the tuples, which arrive from the sensor networks, using unique sensor identifiers.

10 S. TRILLES ET AL.

When an anomaly is detected by CUSUM, the Events Bolt uses the Message Broker Client to send
notifications to the RMS as a Provider. Again, a Queue is created for each sensor and sensing node.
We again apply the Publish/Subscribe model.

The events are currently also provided in a standard format using Common Alerting Protocol
(CAP) encoding. Each event contains a sensor identifier (sender field) and the identifier of the par-
ticular observation that has caused the event (identifier field). CAP is a message format designed for
distributing public warnings. It was standardized by the Organization for the Advancement of Struc-
tured Information Standards in 2004, and uses XML as a data-encoding format. The msgType field
indicates the identified event which refers to an exceeding of the threshold (up-event) or to the fact
that the observed value falls below the thresholds (down-event).

Each event contains a sensor identifier (sender field) and the identifier of the particular obser-
vation that has caused the event (identifier field). The msgType field indicates the identified event
which refers to an exceeding of the threshold (up-event) or to the fact that the observed value
falls below the thresholds (down-event). A second bolt provides access to the latest observations
that the Spouts have sent.

This Bolt is necessary to serve the tuples uniformly and these can be consumed by the final
applications.

The two Bolts use the Message Broker Client as a Producer to connect with the RMS. Also, the
functionalities are both performed with the Publish/Subscribe model, so that different Consumers
(final applications) can connect to the same Queue.

4.3. Event dashboard

An event dashboard visualizes the data provided by the service layer. It shows the triggered decision-
making processes by providing information about detected anomalies in a spatio-temporal context.
This dashboard offers a simple functionality with the aim to test our use case in event detection.
More specific dashboards could be implemented guided by the expertise and interests of other par-
ticular users. These dashboards would have relevant information related to the user’s realm.

The client shows all sensing nodes of a network on a map using markers (Figure 7 (a)). Inside each
marker, the amount of events that have been detected for this particular sensing node appears. If this
node triggers an event, the marker turns red, if not the marker remains blue. The dashboard does not
distinguishes if the event is ‘up’ (exceeding the threshold) or ‘down’ (falling below the threshold). A
scale clustering has been applied to the markers following the quantity of events (Figure 7 (b)). When

Figure 7. (a) Shows the sensing nodes (or cluster) as markers and the events are indicated inside the marker. (b) This figure shows
how clustering is applied taking into account the number of events issued. (c) It shows the different sensors as a markers menu. (d)
A pop-up with a graph is displayed to visualize the last observations and the events launched.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 11

zooming out, the markers will be combined with the total amount of events that have been identified
in the cluster. The color of the marker is red if one sensing node of this cluster launched an event.

If a user selects a single sensing node marker, new markers appear as a menu (Figure 7 (c)). Each
new marker represents a sensor that is associated with this particular sensing node, if a new event has
been reported, the marker will appear in red. Once you click on one of the sensor markers, a new
window appears as a pop-up widget on the dashboard, displaying the latest observations in a
graph (Figure 7 (d)). The observations inside the graph are obtained from the service layer. The
graph is dynamically updated with the latest observations. In the graph, events are highlighted as
a red rhombus. Also, these events are obtained from the service layer. The chart is updated any
time a new observation is produced. The user can display different graphs simultaneously, even
different sensors from different sensing nodes. In this way, one can compare the values of the
same sensory phenomena inside the same network.

To offer a flexible, compatible and standard-compliant solution, we re-used a combination of
already existing frameworks. (1) Leaflet14 with ESRI15 basemap to put the makers on the map. It
has proved to be a fast and efficient solution. In addition, it can be executed in restrictive environ-
ments, such as in smartphones. (2) Another library that we used was Bootstrap.16 It offers the
capacity for building a responsive dashboard, as it can adapt to the device’s features. Also, we use
jQuery17 to handle pop-ups. (3) Finally another framework used was Highchart JS.18 It is a graphics
library written in HTML5 and JavaScript. The library provides an easy and interactive way to gen-
erate graphs in a web environment.

5. Discussion of the proposed methodology

The work presented in this article can be discussed from three different viewpoints. The first subsec-
tion below (Section 5.1) reviews the use of the presented work to analyze data, especially provided by
environmental sensor networks. The next subsection (Section 5.2) analyses the possibility to expand
the methodology to other sensor networks with different kinds of sensor data, such as social net-
works. The final subsection (Section 5.3) discusses issues that directly relate to the applied algorithm
and facilitated data streams.

5.1. Applied to sensor networks

The proposed methodology is designed to be used with data provided by WSNs (mobile sensing). To
our knowledge, this is the first time that Storm is applied in the IoT and environmental monitoring.
It can be applied to analyze data coming from other kinds of WSNs in the context of the IoT (Bahga
and Madisetti 2014), such as home, cities, energy, health, agriculture, and so on. These WSNs can be
designed for both static and mobile sensing.

In fact, our approach has had taken into account different types of sensor networks depending on
the format used. The benefit to integrate all types of data sources is to offer a generic solution that
can be reused at any scenario with different WSN characteristics. For this purpose, the methodology
offers the connection of both, standard and non-standard sensor data sources. In order to connect
with standard sources, a client following the OGC SOS specification is provided and could directly be
re-used to connect to non-environmental sensor data sources. For non-standard sources, ad hoc connec-
tors would be needed to obtain the observation streams. In such a case, we propose to apply wrapping
techniques for establishing the connection. Implementations would only require an extension of the cur-
rently available brokering facilities in order to make it fit to additional protocols.

The standardization of sensor data is another benefit of the proposed solution. Also here, trans-
formations would have to be applied to non-standard sensor data sources. As soon as the ETL pro-
cess from non-standard observations to O&M is defined, the observation series can be directly
handled by our solution. By supporting O&M as a standard format, we homogenize the data

12 S. TRILLES ET AL.

structure that the system internally uses and transfer this to the application layer in order to improve
the creation of applications.

5.2. Application to other different scenarios

The methodology presented was applied to data provided by environmental WSNs. However, the
system is designed to operate with any series of values (observations) generated by sensing nodes,
i.e. it is per se independent of the particular nature of the observed phenomena. The exact processing
will depend on the kind of data provided.

In this way, the defined methodology can equally be applied to sources provided by smart phones,
tablets, wearables, etc. Such devices are increasingly enabled with sensorial capabilities, including Glo-
bal Positioning System (GPS), gyroscopes, accelerometers, cameras, and others. These so-called perva-
sive sensors can be used to provide context-aware, adaptable, and personalized services that closely
interact with the surrounding world. Going one step further, pervasive sensors can be used to infer
peoples activities, which leads to the process of social sensing. Here, people generate huge amounts
of data and share these using Web 2.0 services (e.g. Twitter19 or Instagram20). A possible use of the
presented methodology is to analyze the data provided by these services. In this case, the sensors
are the citizens that provide data streams. As a matter of fact, Storm was initially developed by Twitter,
Inc. (Toshniwal et al. 2014) for exactly such purposes. Similar approaches (using Storm) have already
been suggested to analyse the data provided by different kinds of sensors, including (1) Simoncelli et al.
(2013) used Storm to extract trending hashtags from Twitter, and count occurrences of citations. (2)
Authors in Ji et al. (2014) use Storm framework to analyze the data provided by the magnetic sensor
networks. (3) Kumar (2014) proposes a system to detect anomalies in a water distribution network. (4)
In Nandan (2013), the authors analyze the location of the players and the ball during a football match
by radio sensors. For this, they use Storm to apply a real-time analysis.

The solution presented in this article can be used to encapsulate each of these approaches. It can
be considered a scalable solution, because all system parts have been designed to facilitate its exten-
sibility and reusability. In fact the components follow a modular design to improve reusability. For
instance, the RMS component follows a concept of Message Broker and can be used depending on
the specific scenario. The standards used and the protocol variety also improves the connectivity
between the clients. This helps to reuse the same client in different scenarios.

All in all, we designed and tested an integrated and scalable brokering platform that is able to inte-
grate different data streams with high refresh rates and able to apply any kind of analysis. This
approach is intended to connect with environments where there is a variety of sources, especially
in urban areas such as Smart Cities. The component has been shown to improve interoperability
in the analysis of huge quantities of information across different sensor data sources.

5.3. Anomalies detection

In the proof of concept implementation, we apply the CUSUM algorithm to detect anomalies over
air quality sensor data. We decided to use this algorithm because it has successfully proved in related
works (see Section 3), which applied the basic CUSUM algorithm to detect anomalies from series of
environmental data with different sensory phenomena, such as CO2, PPM, and NOx, among others.

Nevertheless, the CUSUM algorithm has known limitations when it is applied to environmental
data. The CUSUM algorithm detects abrupt changes in a data series following some known prob-
ability distribution function. If a normal distribution is assumed, an abrupt change in the mean of
the distribution is considered only, no change in the standard deviation is assumed. Also, it does
not consider trend changes or the seasonality of a particular phenomenon. The characteristics of
each phenomenon may not only vary depending on the season of the year, but also on the location
of the sensor, for example, a measured phenomenon may not have the same behavior in a rural area
or industrial area. CUSUM is not capable to incorporate such specifics.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 13

The adaptation of the analysis to each sensory phenomenon is beyond the scope of this article.
Our current work focuses on a generic methodology that can apply any analysis over a sensor
data stream, whereas the CUSUM algorithm is only used to illustrate the procedure and provide
a first proof of concept. Any other algorithm for anomaly detection could be equally applied.

It would only require adapting its implementation to be executed inside the Storm framework, which
would be done in a similar way as already presented by the adaptation of CUSUM algorithm. The selec-
tion of the most appropriate algorithms would clearly depend on the investigated sensory phenomena.

6. Related work

In the literature, there are some approaches that are similar to our proposal. The following works all
propose a way to store and analyze data provided by the IoT devices.

. Cecchinel et al. (2014) define a software architecture supporting the collection of sensor-based
data in the context of the IoT. The architecture supports research efforts on Big Data through
the collection of large datasets obtained from physical sensors. The architecture is validated
based on the SmartCampus scenario, but the work done focused on data collection and storage.
The authors propose using OGC standards in the future.

. The authors in Mishra, Lin, and Chang (2015) describe a cognitive-oriented IoT Big data frame-
work (COIB framework) for the effective data management and knowledge discovery over the IoT
Big data layering architecture. This architecture is used in smart industrial applications.

. The paper Fazio and Puliafito (2015) presents two different strategies for managing sensing
resources in the cloud and providing them as a service. A cloud framework called Cloud4Sens
uses sensor web enablement (SWE) specifications. This framework is applied to two different
applications, the first supports risk management and the second detects potholes and monitors
road surface conditions exploiting virtual devices sited in a certain area.

. The work presented in Fazio et al. (2015) presents a hybrid architecture to design a cloud storage
solution able to store huge amounts of heterogeneous data, and provide them in a uniform way
using SWE specifications by the OGC.

. A new framework to handle data provided by IoT is proposed in Lee, Yeung, and Cheng (2015).
The authors present an architecture of a context intelligence platform for big data analytics for
industrial engineering and other research areas. The proposed use case utilizes radio frequency
identification technology to track and control the process in an industry, and uses the defined sys-
tem to control different situations of these industry processes.

. Tai et al. (2015) describe a cloud platform able to connect with heterogeneous WSNs, and standar-
dize them according to the SWE specification. A business intelligence software layer is used for pro-
cessing. Finally, an application layer offers user interfaces in order to interact with the system. The
use case for this work is focused on risk detection in environmental and industrial production.

In order to compare the formerly reviewed works, Table 1 has a comparison between the detailed
works. It uses the following characteristics:

. Big data: the work can be considered to work with high levels uses or does not use open-hardware
components to create the ‘smart things’. Scale: Yes (what framework)/No.

. GIS standards: shows if the system offers GIS standards as OGC specification. Scale: Yes/No.

. Real-time: indicates if the system works in real-time. Scale: Yes/No.

. Analyze: indicates if the system applies an analyze process. Scale: Yes/No.

. Client: indicates if the system provides a client to visualize the sensors and observations. Scale: Yes
(what kind)/No.

. Smart factor: the smart factor to cover with each project. Scale: smart environment, smart people,
smart economy, smart mobility, etc.

14 S. TRILLES ET AL.

Our approach is the only one that guarantees high scalability, provided by the Storm framework.
It aims to be interoperable, and for this purpose, it is the only one that uses OGC standards, such as
SWE. Furthermore, we provide real-time bidirectional communication, in order to offer the sensor
values as soon as possible. Our main objective is to analyze sensor data, and offer the possibility to
apply different algorithms over this kind of data. Finally, the work presented in this article also offers
a web client using Leaflet library. Our context could be applied in whatever ‘smart’ context, but we
have chosen a smart environment scenario.

7. Conclusions

We have introduced a domain-independent methodology to analyze data streams from sensor
networks in near real-time. The methodology includes access points to different sensor data
sources offering multiple protocols. It supports a rich range of tools to connect with sensor
data sources regardless of the particular data types that they offer by following a brokering
approach. This approach also allows connecting with different real-time interfaces, so that the
system could analyze large amounts of sensor data in real-time and can serve the results in stan-
dard formats.

The presented methodology addresses two challenges. The first challenge was to provide a system
able to analyze data coming from sensors in real-time. Multiple sensor data sources are supported.
Our methodology allows analysis of each of the observations without faults. Although, the data
source used has low refresh rates, it could scale to higher refresh rates or add multiple data sources
into the same system. The second challenge is to offer a scalable and interoperable solution. Our
methodology offers different features which contribute to improving these requirements. For this
purpose, the designed components can be reused for other scenarios with other characteristics.
Also a broker design pattern is used to offer multiple connections with heterogeneous interfaces.
Finally, as concluded Cecchinel et al. (2014) sensor data formats are critical to support their exploi-
tation and the use of standards could improve substantially the interoperability, such as the Sen-
sorML initiative. For this reason, our system uses OGC standards to encode the data to provide a
variety of protocols.

To test and illustrate this methodology, we present the implementation of a proof of concept that
detects anomalies in the data provided by environmental monitoring stations. Although our vali-
dation example focuses is domain specific, environmental data, data coming from different fields
(environmental, traffic, health, and so on), could be combined to provide a cross-domain solution
in studies concerned on the traffic influence over the environment, for example.

In this proof of concept, new technologies are used such as the stream processing framework
Storm, and JMS. The CUSUM algorithm has proven to be useful in detecting anomalies in a series
of observations of air quality and weather. However, CUSUM presents some limitations that must be
taken into account, such as the consideration that all the series must follow a normal distribution and
a series of observations cannot have trend changes. The use of alternative algorithms, for example the
one developed by Chelani (2011), remains to be investigated. This should particularly consider those
algorithms that can account for phenomenon-specific probability distributions.

Table 1. Comparison between different related works.

Work reference Big data GIS standards Real-time Analyse Client Use Case

Cecchinel et al. (2014) ✓ (own) ✗ ✗ ✗ ✗ Smart cities
Mishra, Lin, and Chang (2015) ✓ (COIB framework) ✗ ✓ ✗ ✗ Smart industrial
Fazio and Puliafito (2015) ✓ (Cloud4Sens) ✓ ✓ ✓ ✓ Web Smart environ.
Fazio et al. (2015) ✓ (CLEVER) ✓ ✗ ✗ ✗ Smart environ.
Lee, Yeung, and Cheng (2015) ✓ (generic) ✗ ✓ ✓ ✗ Smart environ.
Tai et al. (2015) ✓ (CLEVER) ✗ ✓ ✓ ✗ Smart industrial.
Ours ✓ (Storm) ✓ ✓ ✓ ✓ Web Smart environ.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 15

Such applications to a wider range of phenomena and the according sensor networks would
already allow us to tap into a large part of senses about our environment. It would also enable us
to process the retried data close to real-time and thus provides an important part of a Digital
Earth Nervous System. Conceptually, the work can be directly applied to extend the initial
implementation to other phenomena and data sources. It offers a framework for the parallel hand-
ling of large data streams from heterogeneous sources and thus overcomes the lack of standards of
the IoT and enables us to access and process new dynamic data streams from both private and public
sector in real-time. The up-scaling to larger sensor networks and the inclusion of a larger variety of
data sources into the prototype is a topic for future work.

As a next step, we plan to use a new generation of data sources provided by smart phones or wear-
ables, such as accelerometer, gyroscopes, heart rate monitor, and so on. As well as over the published
data in Web 2.0, in order to infer peoples’ activities in the same moment that the anomalies are pro-
duced. The functionality to process multi-sensory integration as suggested by Ostermann and
Schade (2014) has yet to be developed in a subsequent step.

Other point that we want to explore is the semantic interoperability in the IoT context. In Kotsev
et al. (2015), authors talk about the SWE limits in the semantic area, especially in the IoT context,
due to the high degree of heterogeneity in phenomena of interest, observed properties and applied
measurement procedures. Possible solution such as the Semantic Sensor Network (SSN) Ontology of
the World Wide Web Consortium (Compton et al. 2012) have been developed during the last years,
as part of the Semantic Web and Linked Data movement. As Schade (2005) concludes, new inves-
tigations of the application of semantic interoperability solution have to be carried out to enhance
these issues.

Notes

1. http://activemq.apache.org.
2. http://apollo.apache.org.
3. http://hornetq.jboss.org.
4. http://www.rabbitmq.com.
5. http://kafka.apache.org/.
6. http://52north.org/communities/sensorweb/sos.
7. http://www.meteoclimatic.net.
8. http://www.citma.gva.es/web/calidad-ambiental/datos-on-line.
9. http://www.arduino.cc.
10. http://activemq.apache.org/stomp.html.
11. https://www.mapr.com/products/product-overview/apache-storm-hadoop.
12. http://yahoohadoop.tumblr.com/post/98751512631/the-evolution-of-storm-at-yahoo-and-apache.
13. http://storm.apache.org/documentation/Trident-API-Overview.html.
14. http://leafletjs.com.
15. http://www.esri.com.
16. http://getbootstrap.com.
17. http://jquery.com.
18. http://www.highcharts.com.
19. http://www.twitter.com.
20. http://www.instagram.com/.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work has been supported in part by European Commission and Generalitat Valenciana government [ACIF/2012/
112] and [BEFPI/2014/067].

16 S. TRILLES ET AL.

http://activemq.apache.org
http://apollo.apache.org
http://hornetq.jboss.org
http://www.rabbitmq.com
http://kafka.apache.org/
http://52north.org/communities/sensorweb/sos
http://www.meteoclimatic.net
http://www.citma.gva.es/web/calidad-ambiental/datos-on-line
http://www.arduino.cc
http://activemq.apache.org/stomp.html
https://www.mapr.com/products/product-overview/apache-storm-hadoop
http://yahoohadoop.tumblr.com/post/98751512631/the-evolution-of-storm-at-yahoo-and-apache
http://storm.apache.org/documentation/Trident-API-Overview.html
http://leafletjs.com
http://www.esri.com
http://getbootstrap.com
http://jquery.com
http://www.highcharts.com
http://www.twitter.com
http://www.instagram.com/

ORCiD

Òscar Belmonte http://orcid.org/0000-0002-0121-0697
Joaquìn Huerta http://orcid.org/0000-0002-8625-441X

References

Bahga, Arshdeep, and Vijay Madisetti. 2014. Internet of Things: A Hands-On Approach. VPT. www.internet-of-things-
book.com.

Barratt, B., R. Atkinson, H. R. Anderson, S. Beevers, F. Kelly, I. Mudway, and P. Wilkinson, et al. 2007. “Investigation
into the use of the CUSUM Technique in Identifying Changes in Mean Air Pollution Levels Following Introduction
of a Traffic Management Scheme.” Atmospheric Environment 41 (8): 1784–1791.

Buschmann, F., R. Meunier, H. Rohnert, and P. Sommerlad. 1996. Pattern-oriented Software Architecture, Volume 1: A
System of Patterns. New York: Wiley.

Carslaw, D., K. Ropkins, and M. C. Bell. 2006. “Change-Point Detection of Gaseous and Particulate Traffic-Related
Pollutants at a Roadside Location.” Environmental Science and Technology 40 (22): 6912–6918.

Cecchinel, Cyril, Matthieu Jimenez, Sebastien Mosser, and Michel Riveill. 2014. “An Architecture to Support the
Collection of Big Data in the Internet of Things.” In 2014 IEEE World Congress on Services (SERVICES), 442–
449. Anchorage, AK: IEEE.

Charles, J. C., and P. Jeh-Nan. 2002. “Evaluating Environmental Performance Using Statistical Process Control
Techniques.” European Journal of Operational Research 139 (1): 68–83.

Chelani, A. 2011. “Change Detection Using CUSUM and Modified CUSUM Method in Air Pollutant Concentrations
at Traffic Site in Delhi.” Stochastic Environmental Research and Risk Assessment 25 (6): 827–834.

Chuen-Sheng, C. 1995. “A Multi-Layer Neural Network Model for Detecting Changes in the Process Mean.”
Computers & Industrial Engineering 28 (1): 51–61.

Compton, Michael, Payam Barnaghi, Luis Bermudez, RaúL. GarćıA-Castro, Oscar Corcho, Simon Cox, John Graybeal,
et al. 2012. “The SSN Ontology of the W3C Semantic Sensor Network Incubator Group.” Web Semantics: Science,
Services and Agents on the World Wide Web 17: 25–32.

Cox, S. 2007. Observations and Measurements Part 1 – Observation Schema. Technical report. Open Geospatial
Consortium (OGC).

DeLongueville, Bertrand, Alessandro Annoni, Sven Schade, Nicole Ostlaender, and Ceri Whitmore. 2010. “Digital
Earths Nervous System for Crisis Events: Real-Time Sensor Web Enablement of Volunteered Geographic
Information.” International Journal of Digital Earth 3 (3): 242–259. doi:10.1080/17538947.2010.484869.

Fazio, M., A. Celesti, A. Puliafito, and M. Villari. 2015. “Big Data Storage in the Cloud for Smart Environment
Monitoring.” Procedia Computer Science 52: 500–506.

Fazio, Maria, and Antonio Puliafito. 2015. “Cloud4sens: A Cloud-Based Architecture for Sensor Controlling and
Monitoring.” Communications Magazine, IEEE 53 (3): 41–47.

Grigg, O., V. Farewell, and D. Spiegelhalter. 2003. “Use of Risk-Adjusted CUSUM and RSPRT charts for Monitoring in
Medical Contexts.” Statistical Methods in Medical Research 12 (2): 147–170.

Guh, R., and Y. Hsieh. 1999. “A Neural Network Based Model for Abnormal Pattern Recognition of Control Charts.”
Computers & Industrial Engineering 36 (1): 97–108.

Hapner, M., R. Burridge, R. Sharma, J. Fialli, and K. Stout. 2002. Java Message Service. Santa Clara, CA: Sun
Microsystems, Inc.

Jeske, D., V. Montes De Oca, W. Bischoff, and M. Marvasti. 2009. “Cusum Techniques for Timeslot Sequences with
Applications to Network Surveillance.” Computational Statistics Data Analysis 53 (12): 4332–4344.

Ji, Zhanlin, Ivan Ganchev, Mairtin ODroma, Li Zhao, and Xueji Zhang. 2014. “A Cloud-Based Car Parking
Middleware for IoT-Based Smart Cities: Design and Implementation.” Sensors 14 (12): 22372–22393. http://
www.mdpi.com/1424-8220/14/12/22372.

Khan, I., F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos. 2016. “Wireless Sensor Network Virtualization:
A Survey.” IEEE Communications Surveys Tutorials 18 (1): 553–576.

Kortuem, G., F. Kawsar, D. Fitton, and V. Sundramoorthy. 2010. “Smart Objects as Building Blocks for the Internet of
Things.” Internet Computing, IEEE 14 (1): 44–51.

Kotsev, Alexander, Francesco Pantisano, Sven Schade, and Simon Jirka. 2015. “Architecture of a Service-Enabled
Sensing Platform for the Environment.” Sensors 15 (2): 4470–4495.

Kumar, Simpal. 2014. “Real Time Data Analysis for Water Distribution Network using Storm.” Ph.D. thesis. University
of Fribourg.

Lee, C. K. M., C. L. Yeung, and M. N. Cheng. 2015. “Research on IoT based Cyber Physical System for Industrial big
data Analytics.” Industrial Engineering and Engineering Management (IEEM), 2015 IEEE International Conference
on, Singapore, 2015, 1855–1859. doi:10.1109/IEEM.2015.7385969

Lucas, J. M. 1982. “Combined Shewhart-CUSUMQuality Control Schemes.” Journal of Quality Technology 14 (2): 51–59.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 17

http://orcid.org/0000-0002-0121-0697
http://orcid.org/0000-0002-8625-441X
http://www.internet-of-things-book.com
http://www.internet-of-things-book.com
http://dx.doi.org/10.1080/17538947.2010.484869
http://www.mdpi.com/1424-8220/14/12/22372
http://www.mdpi.com/1424-8220/14/12/22372
http://dx.doi.org/10.1109/IEEM.2015.7385969

Manovich, L. 2012. “Trending: The Promises and the Challenges of Big Social Data.” In Debates in the Digital
Humanities, edited by Matthew K. Gold, 460–475. Minneapolis: University of Minnesota Press.

Mayer-Schönberger, Viktor, and Kenneth Cukier. 2013. Big Data: A Revolution that Will Transform How We Live,
Work, and Think. Boston: Houghton Mifflin Harcourt.

Mesnil, B., and P. Petitgas. 2009. “Detection of Changes in Time-Series of Indicators Using CUSUM Control Charts.”
Aquatic Living Resources 22 (02): 187–192.

Mishra, Nilamadhab, Chung-Chih Lin, and Hsien-Tsung Chang. 2015. “A Cognitive Adopted Framework for IoT Big-
Data Management and Knowledge Discovery Prospective.” International Journal of Distributed Sensor Networks.
http://www.hindawi.com/journals/ijdsn/2015/718390/.

Nandan, Naveen. 2013. “Live Analytics on High Velocity Sensor Data Streams using Event-Based Systems.” Journal of
Industrial and Intelligent Information 1 (1): 1–15.

Nativi, S., M. Craglia, and J. Pearlman. 2012. “The Brokering Approach for Multidisciplinary Interoperability: A
Position Paper.” International Journal of Spatial Data Infrastructures Research 7: 1–15.

Osanaiye, P., and C. Talabi. 1989. “On Some Non-Manufacturing Applications of Counted Data Cumulative Sum
(CUSUM) Control Chart Schemes.” The Statistician 38: 251–257.

Ostermann, F., and S. Schade. 2014. “Multi-Sensory Integration for a Digital Earth NerVous System.” In Connecting a
Digital Europe Through Location and Place: Proceedings of the AGILE 2014 International Conference on Geographic
Information Science, 104–108. edited by Joaquin Huerta, Sven Schade, and Carlos Granell, Castellon: University of
Jaume I.

Page, E. S. 1954. “Continuous Inspection Schemes.” Biometrika 41 (1/2): 100–115.
Schade, S. 2005. “Sensors on the Way to Semantic Interoperability.” Proceedings GI-Days 2005: Geo-Sensor

Networks - From Science to Practical Applications. ifgi-Prints Bd. 23. Münster.
Simoncelli, D., M. Dusi, R. Gringoli, and S. Niccolini. 2013. “Stream-Monitoring with Blockmon: Convergence of

Network Measurements and Data Analytics Platforms.” ACM SIGCOMM Computer Communication Review 43
(2): 29–36.

Tai, Haijiang, Antonio Celesti, Maria Fazio, Massimo Villari, and Antonio Puliafito. 2015. “An Integrated System for
Advanced Water Risk Management Based on Cloud Computing and IoT.” In 2015 2nd World Symposium on Web
Applications and Networking (WSWAN), edited by Salvatore Gaglio and Giuseppe Lo Re, 253–269. Snowbird, UT:
IEEE.

Toshniwal, A., S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, et al. 2014. “Storm@Twitter.” In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD’14), edited by
Curtis Dyreson, Feifei Li, and M. Tamer Özsu, 147–156. New York: ACM.

Trilles, S., O. Belmonte, L. Diaz, and J. Huerta. 2014. “Mobile Access to Sensor Networks by Using GIS Standards and
RESTful Services.” Sensors Journal, IEEE 14 (12): 4143–4153.

Trilles, Sergio, Alejandro Lujàn, Òscar Belmonte, Raùl Montoliu, Joaquìn Torres-Sospedra, and Joaquìn Huerta. 2015.
“SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards.” Sensors 15 (3): 5555–5582.

Trilles, Sergio, Sven Schade, Oscar Belmonte, and Joaquin Huerta. 2015. “Real-Time Anomaly Detection from
Environmental Data Streams.” In Geographic Information Science as an Enabler of Smarter Cities and
Communities, Lecture Notes in Geoinformation and Cartography, edited by Fernando Bacao, Maribel Yasmina
Santos, and Marco Painho, 125–144. Springer International Publishing. doi:10.1007/978-3-319-16787-9_8.

18 S. TRILLES ET AL.

http://www.hindawi.com/journals/ijdsn/2015/718390/
http://dx.doi.org/10.1007/978-3-319-16787-9_8

	Abstract
	1. Introduction
	2. A methodology for the analysis of the sensor data streams
	2.1. Content layer
	2.2. Services layer
	2.2.1. Real-time message service
	2.2.2. Sensor data streaming
	2.2.3. Brokering approach
	2.2.4. Application of algorithms
	2.2.5. Delivery of results

	2.3. Application layer

	3. Real-time event detection using the CUSUM algorithm
	3.1. Past usages of the CUSUM algorithm
	3.2. Description of the CUSUM algorithm

	4. An environmental anomaly detection system
	4.1. Content layer
	4.2. Services layer
	4.2.1. Real-time message service
	4.2.2. Sensor data streaming
	4.2.3. STORM topology

	4.3. Event dashboard

	5. Discussion of the proposed methodology
	5.1. Applied to sensor networks
	5.2. Application to other different scenarios
	5.3. Anomalies detection

	6. Related work
	7. Conclusions
	Notes
	Disclosure statement
	ORCiD
	References

