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1 Abstract 

Synthesis reproducibility of mixed spinels Fe1-ΨCoΨCr2-2ΨAl2ΨO4 (0≤Ψ≤1), obtained 

by Solution Combustion Synthesis using urea as fuel, has been studied. Pigments 

with spinel structure Fd-3m have been obtained for all the compositional range 

analyzed. Characteristics such as crystallinity, cell parameter, crystal size and 

specific surface area show a noticeable dependence with Ψ, but some of them present 

a low reproducibility, indicating a pronounced dependency with process conditions 

in each batch. 

Colouring power of synthesized pigments is highly significant, so they can be 

directly integrated in ceramic glasses without introducing a second thermal 

treatment. However, the generated colour also suffers from a limited reproducibility. 
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2 Introduction 

Solution combustion synthesis (SCS) is an innovative method to synthesize ceramic 

pigments, which allows obtaining materials in a direct pathway, with a low particle 

size, using short reaction times and moderate temperatures [1].  

Experimental results reported on this topic show that the traditional methodology for 

preparation of spinels via ceramic method involves annealing at temperatures up to 

1400ºC and long soaking times [2]. During this thermal treatment, solid state 

reactions take place and the chromophore cations are incorporated into the newly 

generated host lattice. However, due to the elevated temperature reached during the 

process, the resulting pigment presents low specific surface area and high particle 

size, which is reflected in a low colouring power. For this reason, in the industrial 

practice a milling operation of the pigment is mandatory in order to obtain a 

marketable product. In addition, the ink-jet technology applied to ceramic decoration 

requires pigments with a particle size around 500 nm, which supposes an increase in 

the cost of the milling stage and a change in the milling technology. As a 

consequence, there is a growing demand for alternative routes for synthesizing 

pigments that give directly particle sizes near to the interval recommended for ink-jet 

machines. SCS is a method suitable to overcome some important disadvantages of 

ceramic pigment traditional processing because it could generate pigments as low 

cohesive masses formed of nanograins, easier to mill up to the submicrometer 

interval. 
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SCS method begins with a concentrated aqueous solution of precursors of the desired 

product (being the nitrates the most frequently used), and a suitable fuel (glycine, 

urea, hexamethylentetraamine, hydrazine and their derivates, etc.). The solution is 

heated at high rate in order to evaporate all water and, afterwards, to ignite the fuel 

present in the solid residue, which supplies enough energy to carry out the synthesis 

reaction. The reaction product is frequently obtained as a spongy mass. 

SCS has been used to synthesize large number of inorganic materials, either simple 

oxides (α-Al 2O3 [3], ceria [4], γ-Fe2O3 [5], magnetite [6], anatase [7], zirconia [8] 

and cobalt oxides [9]), or mixed oxides with different complexity (wollastonite [10], 

CaAl2O4 [11], YAG [12], doped MgO [13], Ti1-xMxO2 [14], perovskites [15-17]). In 

addition, due to SCD high versatility to obtain complex structures, some research 

groups have investigated the synthesis of ceramic pigments by means of this method. 

Patil et al. have obtained many spinels, as CoAl2O4 [18], CrxAl 2-xO3 [19], and also Zn 

and Ni ferrites [20] and Co, Cu and Fe chromites [21]. Afterwards, other groups have 

studied other mixed oxides as the ones derived from the ZnO-NiO-Fe2O3 [22], CoO-

FeO-Cr2O3 [23] and ZnO-CoO-Al2O3 [24] systems. 

Most of the spinel-type ceramic industrial pigments include more than three metals 

in their composition to adjust the final colour. As a consequence, it was investigated 

whether SCS was adequate to synthesize complex spinels. The system FeO-CoO-

Cr2O3-Al 2O3 was selected for the research, because it could cover a wide palette of 

colours, being the extreme spinels FeCr2O4 and CoAl2O4 two of the most common 

pigments used in the traditional ceramic sector as the Color Pigments Manufacturers 

Association defines [25]. On the other hand, since the pigments prepared by SCS are 

candidates to develop suitable inks to be used in the inkjet technology, the 

reproducibility of the synthesis process was analysed because it would be an 
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essential factor to consider in regards to a possible scaling-up of the method to an 

industrial level.  

3 Experimental procedure 

The pigments were designed as solid solutions of two spinels with high colouring 

power, such as brown FeCr2O4 and blue CoAl2O4. Consequently, their compositions 

corresponded to the formula Fe1-ΨCoΨCr2-2ΨAl2ΨO4 (0≤Ψ≤1 in steps of 0.2). 

Solutions were prepared from their corresponding nitrates, using urea as fuel (all 

reactants were from Panreac Química, S.A.U. Spain), and distilled water as solvent. 

The addition of urea was calculated following the reaction stoichiometry in order to 

assure the complete combustion of the mixture (table 1). 

The solution was placed in a pyrex container of 11 cm in diameter and 350 mL 

capacity which was introduced in a kiln preheated at 500 ºC (BLF 1800, Carbolite 

Furnaces Ltd, UK). After 20 minutes of soaking time, the kiln was turned off and 

allowed to cool the sample. Three replicas were obtained for every composition. 

Every synthesized pigment was wet milled in water in a ball mill, using agate jars 

(Pulverisette 5, Fritsch GmbH, Germany). The evolution of the crystalline phases 

present, the crystal size and the cell parameters as a function of composition were 

monitored by XRD (Theta-Theta D8 Advance, Bruker, Germany), with CuKα 

radiation (λ = 1.54183 Å). The generator settings were 45 kV and 40 mA. The XRD 

data were collected in a 2θ of 5–90º with a step width of 0.015º and a counting time 

of 1.2 s/step by means of a VÅNTEC-1 detector. The collected data were used in a 

Rietveld refinement. The 4.2 version of the Rietveld analysis program DIFFRACplus 

TOPAS was used, assuming a pseudo-Voight function to describe peak shapes. The 

refinement protocol included the background, the scale factors and the global-
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instrument, lattice, profile and texture parameters. The specific surface area was 

determined according to the BET method using the adsorption isotherm and nitrogen 

gas as adsorbent (Tristar 3000, Micromeritics, USA). The microstructure of the 

samples was characterized by FEG-SEM (QUANTA 200F, FEI Co, USA). Chemical 

composition was determined by an energy-dispersive X-ray microanalysis instrument 

(Genesis 7000 SUTW, EDAX, USA) coupled to the FEG-SEM. Moreover, oxidation 

state of the elements was studied by means of X-ray photoelectron spectroscopy 

(XPS) using a Specs SAGE 150 instrument. In order to identify all the elements 

present, the range of binding energies was analysed between 1100 eV and -5 eV. The 

analyses were performed using non-monochrome AlKα irradiation (1486.6 eV) at 20 

mA and 13 kV, a constant energy pass of 75 eV for overall analysis, 30 eV for 

analysis in the specific binding energy ranges of each element, and a measurement 

area of 1x1 mm2. The pressure in the analysis chamber was 8∙10-9 hPa. The energy 

corrections of the spectra were performed considering a reference value of C 1s 

owing to the organic matter at 284.8 eV. 

Colour development was evaluated by introducing every pigment into a transparent 

fast-firing wall tile glaze (chemical composition 0.5% Na2O 4.0 % K2O, 15.3% CaO, 

0.9 MgO, 9.0% ZnO, 7.4% Al2O3, 3.0% B2O3, 59.5% SiO2). A 2/98 wt% slip was 

applied over a fired wall tile, and afterwards, fired together in an electric laboratory 

kiln according to a thermal cycle of single-fired floor tiles (maximum temperature 

1100 ºC and 6 min of soaking time at this temperature). The spectrophotometric 

curve and CIELab chromatic coordinates of the glazed surfaces were determined 

using CIE Illuminant D65 and CIE 10º standard observer (Color Eye 7000A, X-Rite 

Inc, USA). 
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4 Results and discussion 

Synthesized pigments covered a wide colour palette, from dark brown to dark green, 

passing through different grey intensities and even black. Colour gradients were 

absent in the as-obtained mass, which indicates a good chemical homogeneity in the 

pigments. Regarding their consistence, an important evolution in the final product 

was observed, due to the fact that when Ψ = 0.0 a very spongy mass was obtained, 

but while as Ψ was increasing, the mass was progressively reducing their porosity, 

indicating a gradual change in the reaction mechanism. The spongy consistence of 

the pigments can be justified because of the high volume of gases generated during 

the combustion process. However, it has also been described that in the case of urea 

the volume of gases is not high enough to dissipate rapidly the heat of reaction, 

which favours the product sintering [21], which could be the cause of the change in 

the consistence. 

4.1 Chemical composition 

EDX analysis was used to evaluate the chemical homogeneity of the pigments. 

Figure 1 shows the molar percentage of the five elements as a function of Ψ. The 

results confirmed that pigment synthesis have been developed in a very effective 

way. The homogeneity in the distribution of metals was good, since experimental 

values follow the theoretical path. That behaviour means the reaction takes place 

following stoichiometric proportions, so the energy generated by the combustion of 

urea is far enough to synthesize the desired spinel, always talking from a chemical 

homogeneity point of view. 
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With respect to oxygen, pigments with higher percentages of Fe and Cr showed an O 

content slightly superior to the theoretical value, which could be associated to 

changes in the state of oxidation of iron. In figure 2 can be observed that the peak 

deconvolution of the XPS spectrum obtained to measure the electronic state of iron 

in the FeCr2O4 spinel (Ψ=0) clearly indicates the presence of both Fe2+ and Fe3+ 

cations in the structure. By contrast, pigments richer in Al and Co presented an 

oxygen content more similar to the theoretical one.  

According to the reproducibility of data, the pigment composition was relatively 

stable, independently of the Ψ-value considered. However, it has been observed a 

higher deviation from the stochiometric composition when Ψ≥0.8, phenomenon that 

could reveal some difficulties to obtain a completely homogeneous composition for 

the CoAl2O4 spinel in the short time of reaction. 

The results demonstrate the effectiveness of SCS reaction to develop a homogeneous 

product which includes more than three metals. 

4.2 Crystalline structures 

XRD analysis showed that all samples possessed a spinel structure, face centred 

cubic crystal phase (space group Fd-3m) whose main intensity peaks ranged between 

the reflections of pure FeCr2O4 and CoAl2O4 spinels. No signals of free oxides not 

integrated in the structure were detected, indicating a perfect development of spinel-

type structure. However, composition of initial mixture exerted a pronounced effect 

on cell parameters and crystal size of spinels.  

The evolution of the main X-ray reflection pattern of the spinel (I100), as function of 

Ψ–value, shows important events regarding the formation of the spinel structure 

(Fig. 3). Contrary to what might be expected, pure spinels are not the ones that 
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present the highest crystallinity. In fact, the intensity of the main peak increases as 

reduced proportions of Co and Al cations are integrated in the FeCr2O4 spinel. 

Mixtures with Ψ values between 0.2 and 0.4 promote a considerable improvement of 

the pigment crystallinity, since their I100 is higher than in the rest of the cases. 

However, if Ψ is further increased, the pigments show a progressive decrease in their 

crystallinity and, as a consequence, the diffraction peak becomes practically an 

amorphous hallo for Ψ=1. In other words, when the composition of the solution is 

designed to obtain the CoAl2O4 (Ψ=1), the product has a low crystallinity because 

this spinel is highly difficult to crystallize in SCS conditions. Experimental 

behaviour observed in the XRD patterns is consistent with the evolution of crystal 

size (Fig. 4) determined by Rietveld adjustment since a maximum in crystal size was 

observed when the spinel crystallinity was the highest (Ψ = 0.2). The smallest 

crystals were measured in the cobalt aluminate pigments, and the biggest ones in the 

cobalt-rich chromite structures, but the descending progress was more pronounced 

for Ψ ≥ 0.6, corroborating the negative effect of aluminium and cobalt ions on the 

crystallization of the spinel. 

As some authors have studied [1], SCS is adequate to prepare non-transition metal 

aluminates that are totally crystalline and spongy; but there are some disadvantages 

when transition metal aluminates like CoAl2O4 are synthesized because they are 

thermally unstable at that temperature. Referring to its equilibrium phase diagram 

[26], CoAl2O4 is absolutely stable at temperatures achieved during SCS process (̴ 

1500ºC), as long as the mixture follows the correct stoichiometry because sample 

temperature is far below its melting point (1980ºC). Thus taking into account both 

references, it could be thought that one of the reasons for the lack of crystallinity for 

CoAl2O4 spinel is the fast kinetics of the reaction. In fact, the process is too fast to 
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allow the cation reorganisation to obtain a highly crystalline spinel because during 

the drying process to obtain the gel, there could be a segregation between the 

different salts. This phenomenon only happens in the case of Co and Al precursors 

but not in the case of Fe and Cr ones. 

Regarding crystallinity of the mixtures, the effect of exchanging Fe2+ ion by Co2+ in 

the iron-chromite spinel was studied in previous works [23], observing an 

improvement in the pigment crystallinity as the Co content increased. Therefore, 

taking into account the isolated effect of the Co element, what it seems to happen is 

that Co helps to improve crystallinity of chromite remaining unalterable spinel 

structure. However, Al3+ cation acts in a different way, possibly because it has lower 

ionic radii than Cr3+, and this fact could difficult crystallization under SCS 

conditions. 

The general trend of lattice parameters of the cell was consistent with the lower ionic 

radius of the Al3+ (0.39 Å) with respect to the Cr3+ (0.62 Å) in octaedric 

coordination, since the ionic radii of the divalent ions in tetraedric coordination are 

similar (0.65 and 0.61 Å for Co2+ and Fe2+, respectively). The lower the ion size is, 

the shorter the distance between ions becomes and, as a consequence, the lattice 

parameter decreases since dimensions of the spinel cell are reduced [27]. Figure 5 

shows the evolution of the cell parameter obtained by Rietveld method as a function 

of Ψ. As it can be observed, lattice parameter ranges from pure Fe-chromite 

(reported value 8.26 Å [28]) to Co-aluminate (8.06 Å [29]). The evolution was less 

linear than expected according to the Vegard’s law, because a positive deviation 

from the estimated values was clearly observed. Experimental data decrease at an 

approximate constant rate from Ψ= 0.0 to Ψ= 0.6, which could mean that the 

pigment structure remains relatively similar to FeCr2O4. But at Ψ ≥ 0.6 appears an 
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inflexion point from which lattice parameter undergoes a more pronounced 

downward trend, and the lattice parameter resembles to CoAl2O4 spinel. This 

behaviour has been previously observed in other spinel systems by Shou-Yong et al. 

[30] and Nlebedim et al. [31], however, no generally accepted explanation has been 

proposed yet for this phenomenon.  

Apart from the general trend obtained for crystallinity and crystal size, it has been 

observed certain variability of these properties in some compositions. The 

reproducibility of the method indicates that the fast reaction kinetics of SCS 

difficults to reach the equilibrium structure of the spinels. This effect is especially 

appreciable when the highest grades of crystallinity are expected (0.2 ≤ Ψ ≤ 0.4). 

Unless all process conditions in the synthesis are maintained under strict control, 

pigment crystallinity could show wide variations because of their fast kinetics. 

4.3 Morphology and grain size 

Specific surface area was selected as a parameter directly related to pigment 

microstructure, allowing the study of pigment morphology related to the change in 

the composition of spinel. Only for the composition with Ψ = 0.2, which was the one 

that presented more variability in XRD analysis, the measurements were carried out 

in the three replicas, and thus it was possible to evaluate the variability of this 

parameter.  

Specific surface area was maintained practically stable in the range from Ψ = 0.0 to 

Ψ = 0.6, since it oscillated inside a defined band of 26 ± 8 m2·g-1. However, it was 

observed a change in the trend for higher values of Ψ. This is because the specific 

surface area increased considerably from this point, until achieving values around 

200 m2·g-1 for the pigment corresponding to CoAl2O4 spinel. This fact pointed out an 
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important modification in the microstructure of the pigment. In this case, the SEM 

images allowed understanding the results of a specific surface area (Fig. 6). Pigments 

corresponding to Ψ values from 0.0 to 0.6 showed a microstructure composed by 

well-sintered rounded grains. These were forming agglomerates with low porosity 

and practically smooth surfaces, which correlates with a moderate specific surface 

area. However, the grain size was not homogeneous, presenting a minimum in 

Ψ=0.2. Pigment with Ψ=0.8 also maintained rounded grains, but the sintering grade 

was notably inferior, thus the agglomerates were rougher. This was totally coherent 

with the observed increase in the specific surface area. The microstructure changed 

completely for the pigment richest in cobalt (Ψ = 1.0). In fact, its morphology 

consisted of laminar-shaped grains with a high diameter (up to 150 nm) and a 

reduced thickness, being less sintered and forming porous agglomerates. All this 

features promoted the sharp increase in specific surface area for Ψ = 1.0 sample [32]. 

In addition, there is a relation between Se and crystal size (Fig. 7), the lowest values 

of crystal size corresponded to the highest values of specific surface area due to the 

generation of intergrain porosity when the laminar-shaped grains of the Co-rich 

pigment are formed. On the other hand, however, high crystal sizes developed round-

shaped grains with no intergrain porosity for Fe-rich chromites. 

4.4 Determination of colouring power 

The incorporation of the pigment samples into a transparent glaze generated intense 

coloured surfaces in all cases. This confirmed that all synthesized spinels behave as 

ceramic pigments, despite their particles were formed by nanosized grains. 

The colour palette covers from reddish brown (Ψ = 0) to intense blue (Ψ = 1), 

through relatively pure but little saturated blacks. It was observed in the glaze 
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reflectance curves (Fig. 8) that as Ψ increases, the characteristic absorption band of 

Fe2+ in tetrahedral position (occurring between 570 and 700 nm) was progressively 

soften. However, the characteristic reflexion of Co at 410 nm only appeared for 

pigment with Ψ = 1 [24]. Regarding the rest of reflexion curves, their main 

characteristic was the reflexion queue getting into the infrared range. 

The CIELab coordinates exhibited strong correlations with the theoretical spinel 

composition, but with quite different trends (Fig. 9). It should be pointed out the high 

variability detected in the colouring power of the different replicas, which could be 

the consequence of the limited reproducibility observed in the XRD results. 

L* showed the most complex evolution, but within the narrowest range of variation. 

Luminosity presented a strong minimum around Ψ = 0.8, with a variation range of 

about 18 units and without any symmetry regarding composition (Fig. 9a). On the 

other hand, L* coordinate presented a significant variability, since the mean variation 

range between the highest and the lowest value for every Ψ reached 2.3 units (σ-

parameter). As it was deduced in previous works of Mestre et al., such marked 

changes in colour brightness generated by some spinels are due in part to their lower 

crystallinity.  This would facilitate the attack by the molten glaze generated during 

firing [23]. a* coordinate also showed a significant minimum (Fig. 9a), with a 

variation range similar to L*. The variability of a* coordinate was the lowest, since 

σ-parameter reached 0.7 units. By contrast, b* coordinate presented a behaviour 

completely different, because it showed a diminishing trend without critical points 

and the maximum variation range (practically 50 points, fig. 9b). b* coordinate 

progress exhibited two different segments, but both practically linear: The first one, 0 

≤ Ψ ≤ 0.8, presented a moderate slope, while the second one showed a more 
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pronounced descending. The variability of this coordinate was intermediate between 

the other two ones, since σ-parameter was 1.5 units.  

Some visual similarities between crystallographic parameter behaviour and the 

chromatic coordinates were observed, but not with the crystal size. It is possibly 

because the pigments are integrated in the vitreous matrix as big-size agglomerates 

and not as individual crystals. Regarding cell parameters, some good correlations 

were identified due to the fact that cell parameters are directly influenced by 

composition. Luminosity (L*) and a* coordinate showed well-defined parabolic 

correlation with cell parameter (Fig. 10a). Nevertheless, it has to be pointed out that 

the synthesizing of pigments with the same cell parameter not assures the 

development of the same colour. This fact indicated that colouring power also 

depend on other non-identified factors. Regarding b* coordinate, figure 10b shows 

that this parameter presents a practically linear relation with cell parameter. This 

result correlates with the fact that the major content in cobalt and aluminium reduces 

the cell parameter and the generated colour tend to be more bluish. 

5 Conclusions 

Solution combustion synthesis has been validated as a suitable method to synthesize 

ceramic pigments designed as solid solutions between two spinels with a 

composition Fe1−ΨCoΨ(Cr2-2Ψ, Al2Ψ)O4 (being 0 ≤ Ψ ≤ 1) using urea as fuel. The 

process is very fast and chemically homogeneous pigments are obtained, with a 

spongy aspect that makes them easy to disintegrate. The composition of the raw 

material mixture has a significant effect on the spinel cell parameter, crystallinity, 

crystal size and grain size. The best crystallized spinels are obtained when a slight 

proportion of cobalt and aluminium is incorporated to the spinel structure of Fe-
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chromite (0.2 ≤ Ψ ≤ 0.4). A further increase in Ψ reduces considerably the 

crystallinity of the structure till obtaining nearly an amorphous product due to the 

small size of crystals formed. SCS pigment properties show an important 

dependency with process parameters because the higher crystallinity, the wider 

variability they present. Cell parameter is less influenced by the process because it 

depends basically on composition. The effect of the composition is also observed in 

the microstructure of particles, consisting of sintered nanosized grains. By increasing 

the cobalt and aluminium content in the structure, pigment grains reorganize their 

geometry from a sintered round-shaped nanosized particles to a completely different 

structure based on laminar-shaped agglomerates with higher size. All spinels exhibit 

a high colouring power in a transparent glaze without any additional thermal 

treatment, covering a fairly broad colour palette. 
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Table 1 Composition of each synthesized spinel (0<Ψ<1 in steps of 0.2) 

Ref. Ψ 
Urea 
(g) 

Cr(NO 3)3 
·9H2O 
(g) 

Fe(NO3)3 
·9H2O 
(g) 

Co(NO3)2 
6H2O 
(g) 

Al(NO 3)3 
9H2O 
(g) 

H2O 
(mL) 

A1 

A2 

A3 

A4 

A5 

A6 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

13.51 

13.21 

12.87 

12.61 

12.31 

12.01 

24.01 

19.21 

14.41 

9.60 

4.80 

0.00 

12.12 

9.70 

7.27 

4.85 

2.42 

0.00 

0.00 

1.75 

3.49 

5.24 

6.98 

8.73 

0.00 

4.50 

9.00 

13.50 

18.01 

22.51 

25 

25 

25 

25 

25 

25 
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Figure 1 Comparison of theoretical stoichiometric composition (solid lines) with 

EDX data of pigments obtained by SCS (points) 

 

Figure 2 XPS spectrum obtained to study the electronic state of iron in the FeCr2O4 

spinel (Ψ=0) 
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Figure 3 Evolution of the XRD’s main reflection (I100) of the pigments in function of  

Ψ and the number of replica. 
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Figure 4 Evolution of crystal size depending on parameter Ψ 

 

Figure 5 Comparison of cell parameters of the spinel with the prediction of Vegard’s 

law, based on the ICCD data from the spinels FeCr2O4 (Ψ = 0) and CoAl2O4 (Ψ = 1). 
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Figure 6 Micrographies obtained by SEM of synthesized pigments 
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Figure 7 Evolution of specific surface area as a function of crystal size 

 
Figure 8 Reflectance curves of the glazes that contain the synthesized pigments 
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Figure 9 Evolution of chromatic coordinates of glaze as function of the composition 

of the incorporated pigment: a) L* and a* coordinates and b) b* coordinate 

 

Figure 10 Evolution of chromatic coordinates of glaze as function of the incorporated 

pigment cell parameter: a) L* and a* coordinates, b) b* coordinate 
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