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Abstract

Elucidating the relationship between the free energy landscape of enzymes and their 

catalytic power has been one of the challenges of modern enzymology. The present work 

explores this issue by using a simplified folding model to generate the free energy 

landscape of an enzyme and then evaluating the activation barriers for the chemical step 

in different regions of the folding landscape. This approach is used to investigate the 

recent finding that an engineered monomeric chorismate mutase (CM) exhibits catalytic 

efficiency similar to the naturally occur dimer even though it exhibits the properties of an 

intrinsically disordered molten globule. It is found that the molten globule becomes more 

confined than its native-like counterpart upon ligand binding but still retains a somewhat 

wider catalytic region. Although the overall rate acceleration is still determined by the 

reduction of the reorganization energy, the detailed contribution of different barriers 

provides a more complex picture for the chemical process than that of a single path. This 

study provides the first systematic study of the relationship between folding landscapes 

and catalysis. The computational approach employed here may also provide a powerful 

strategy for modeling single molecule experiments and for enzyme design. 
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I.  Introduction

 Although many proposals have been put forward to rationalize the enormous 

catalytic power of enzymes (see ref (1, 2) for reviews) almost all of these proposals 

invoke a rather precise orientation of active site groups. However, protein free energy 

landscapes are very complex (3) and similar complexity may also applies to the landscape 

of activation barriers for the chemical step (2, 4-7). This raises the intriguing possibility 

that protein catalytic power may reflect the nature of this landscape. In fact, realization 

that the chemical landscape is complex originally motivated our approach of averaging 

calculated activation barriers in studies of enzyme catalysis (e.g. (8)). A closely related 

experimental observation has been provided by a recent study of Hilvert and coworkers 

(9, 10) who demonstrated that intrinsically disordered proteins can achieve large catalytic 

effects. These researchers converted a dimeric chorismate mutase (CM) from 

Methanococcus jannaschii into a highly active monomer (mMjCM). Surprisingly, despite 

providing essentially the same catalytic power as the native enzyme, the engineered 

catalyst behaves like a molten globule, a dynamic ensemble of poorly packed and rapidly 

interconverting conformers. This finding seems to challenge the conventional view that 

efficient catalysis requires an exquisitely preorganized active site structure. 

 The current work explores the relationship between folding and catalytic landscapes 

by using a simplified folding model to generate the folding landscape and then by 
evaluating the activation barriers for the chemical step in different regions of this 

landscape. The nature of the catalytic effect in both the engineered monomer and the 

dimeric wild-type CM, which catalyzes the conversion of chorismate to prephenate (see 

Fig. 1 and ref (11, 12)) in the biosynthesis of L-tyrosine (Tyr) and L-phenylalanine (Phe), 

is considered. Our study reproduces the observed experimental trends and reveals an 

interesting situation where the flat landscape of the monomer allows this system to reach 

preorganized catalytic configurations without paying significant preorganization energy. 

In addition to constituting what is probably the first systematic computational study of the 

landscape for enzyme catalysis, the approach used here provides a fundamental new 

insight into the relationship between folding and catalysis and could be an effective tool 

for computer aided enzyme design. 
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II. Simulating the landscape for folding and catalysis
 In the first step of our study we used a simplified folding model to explore the free 

energy landscape of the monomer and dimer systems. The two systems are the 

homodimeric chorismate mutase from Escherichia coli (EcCM) (13) and the monomeric 

chorismate mutase mMjCM obtained by Hilvert and coworkers (6) by topological 

redesign of the thermostable EcCM homologue from M. jannaschii (MjCM).§ The 

coordinates for the EcCM and mMjCM structures were obtained from the Protein Data  

Bank, Brookhaven National Laboratory, with PDB access codes 1ECM and 2GTV, 

respectively. Both enzymes adopt a helix-bundle structure (see Fig. 2) and they contain 

an endo-oxabicyclic dicarboxylic acid inhibitor that mimics the transition state of the CM 

reaction (transition state analog, TSA) at their active site. 

We started by exploring the free energy of the protein configurations as a function of 

two well-defined parameters, specifically the radius of gyration (Rg) and the contact 

order (CO) (see Methods). The resulting free energy surface (which is referred to as a 

landscape) reflects the probability of finding the protein in different configurations, 

ranging from fully folded to partially unfolded. The landscapes for the monomer and 

dimer in the absence of TSA are shown in Fig. 3(a). As seen from the figure, the two 

surfaces are very different. Specifically, the monomer surface is much more extended 

along the CO axis than the dimer. This feature is consistent with the corresponding 

experimental observation that the monomer behaves like a molten globule (9). Fig. 3(b) 

depicts the folding landscapes in the presence of the TSA. The low energy region of the 

landscape becomes more confined than in the absence of TSA for both the monomer and 

the dimer, although this effect is much more pronounced in the case of the monomer, 

again in agreement with the experimental finding of a drastic reduction in molten globule 

character upon TSA binding (10).

Next we turned to the task of evaluating the catalytic power of the monomer and the 

dimer in different regions of the folding landscape. This was accomplished by calculating 

full Empirical Valence Bond (EVB) surfaces for: (a) explicit structures derived from the 

x-ray and NMR structures of EcCM and mMjCM, respectively (Region I); (b) explicit 
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structures corresponding to the minimum energy region of the simplified models for both 

enzymes, using a K’= 5 kcal/mol·Å2 potential (see the Methods section) to constrain the 

distance between key catalytic residues and bound ligand to be near the corresponding 

native distance (Region II); and (c) explicit structures generated from a region far from 

the minimum of the simplified model, again with K’= 5 kcal/mol·Å2 (Region III). The 

sections of the landscape corresponding to Regions II and III for the monomer and the 

dimer are shown in Figure S1 in supporting information (SI).  As can be seen from Table 

1 in SI, the procedure used for region I allows us to sample structures that are in the 

immediate neighborhood of the native proteins (RMSD < 1.0Å). In contrast, the approach 

for regions II and III provides access to structures that are further away (RMSD < 4.0 Å 

and > 4.8 Å, respectively). Without a simplified model it would be difficult to generate 

the latter structures with reasonable statistics. 

The structures used in the calculations of the barriers in region I were generated by 

running 200 ps molecular dynamics (MD) simulations on the relaxed native structure and 

saving structural files each 5 ps, thus generating a total of 40 different starting 

conformations. In order to generate the structures for region II, we started by taking 

randomly simplified structures from the lowest energy portion of the folding landscape 
(labeled A in Fig. S1 in SI). Next we added the side chains to these simplified structures, 

while minimizing the distance between the simplified side chain center and the new 

explicit side chain center. After that, minimization and relaxation of the side chains were 

performed with the explicit model. Finally, we replaced the TSA by the substrate for the 

catalytic reaction (chorismate) and evaluated the free energy barriers. The same 

procedure was followed in the treatment of structures from region III (labeled B in Fig. 

S1 in SI).

The experimentally observed activation barriers for the monomer and dimer are 

approximately 16.9 and 16.3 kcal/mol (14), respectively. These can be compared with the 

calculated activation barriers and the probability of finding them within the population of 

the sample region, which are depicted as histograms in Fig. 4. As seen from the figure, 

the lowest barriers are found in the native region (region I) for the monomer and the 
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dimer, but we also find low barriers in region II (generated by the simplified model).  

Interestingly, it appears that the monomer has a larger region with catalytic 

configurations than the dimer. That is, in the monomer we find a large probability of 

having barriers in the 16-18 kcal/mol range in Region II, whereas the probability of 

encountering low barriers in the analogous region for the dimer is quite low. In region III, 

the probability of obtaining low activation barriers is zero in both systems.  

In order to further understand the nature of the catalytic effect in the different regions 

of the landscape we evaluated the reorganization energies (λ) that determine the 

activation free energy (∆g‡) (see ref (8) for discussion) in regions that give low ∆g‡ and 

high ∆g‡ for both systems. The correlation between the ∆g‡ and λ values is given in Fig. 

5 for both the monomer (a) and dimer (b). As seen from the figure the regions with low 

catalytic efficiency involve large reorganization energy in the direction of the reaction 

coordinate (the calculated reorganization energy is evaluated along the reaction 

coordinate). This means that although we have a large accessible landscape only a small 

part of it provides the needed small reorganization energy.  

Finally, we considered the overall nature of the catalytic landscape by sorting the 

activation barriers according to the root mean square deviation (RMSD) of the atomic 

positions from the corresponding positions in the native structure (this is possible because 

all the activation barriers were calculated using an explicit model regardless of the way 

the initial configuration was generated). The results of this analysis are depicted in Fig. 6. 

This figure arranges the free energy profiles with arbitrary equal spacing and thus can 

only be considered as a qualitative description of the actual catalytic landscape (more 

quantitative ordering is given in Table 1 in SI). The height of the different configurations 

in the reactant states (RS) should be similar, although a more quantitative treatment will 

be needed to evaluate the actual free energy surface in the RS. This will require adding to 

the free energy change in the simplified model the free energy of moving from the 

simplified to the explicit model (the probability of being at different regions of the 

explicit landscape should be determined in principle by the perturbation approach of ref. 

(15) that involves perturbation from the simplified to the explicit model). We have not 
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determined the barrier for motion on the TS ridge between the different configurations 

considered in Fig. 6, and this challenging task is left for subsequent studies. However, our 

tentative landscape is clearly instructive. For example, as seen from the figure, the 

catalytic configurations (with low barriers) for the wild-type EcCM dimer are confined to 

the native region, whereas the catalytic landscape of the monomer is more extended with 

some catalytic configurations in region II. That is, in the case of the monomer we have 

several low barriers in region II, while in the case of the dimer all the barriers in the 

second region are significantly higher than those in the native region and thus cannot help 

in the catalytic process. The implications of the present finding are discussed below. 

III. Discussion 
 Because the relatively flat folding landscape found for the monomer appears to 

contradict the idea of optimized preorganization, we examined this observation from 

several perspectives. First, we evaluated the reorganization energy in several regions and 

showed that it is small only in regions with small activation barriers. We also showed in 

preliminary calculations (2) that the electrostatic contribution to protein stability is 
minimal in the regions with the largest catalytic effect, which is consistent with the idea 

that the protein pays in folding energy to obtain minimal reorganization energy (16). The 

electrostatic reorganization, which is so crucial for enzyme catalysis, can be obtained 

even in the case of the CM monomer. It seems, however, that in the case of mMjCM the 

region with low reorganization energy is wider than in the case of the dimer. 

 The approach exploited in this study provides a computational glimpse into the 

landscape that governs enzyme catalysis. It includes a statistical analysis of the 

probability of having small activation barriers in different regions (Fig. 4) and the 

landscape of activation barriers for randomly selected configurations. A more complete 

study will be needed to evaluate the barriers for moving between the different 

configurations used to construct Fig. 6 (see Fig 3 in reference (4) and the tentative 

barriers in Fig. 6 (a)). Such an analysis will provide a more complete picture of the 

coupling between the different barriers. 
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Although the existence of a heterogeneous set of barriers provides an interesting twist 

to conventional enzyme models, it does not change the basic physics of enzyme catalysis. 

That is, the lowest barriers still determine the average rate and these barriers are 

determined by the corresponding reorganization energy. In other words, as long as the 

barriers between the different configurations in the ground state are lower than the 

chemical barrier, solution of the multistate rate equation will follow the trend dictated by 

the lowest activation barriers. Of course, if the chemical barriers are very low (in the 

range of few kBT, where kB is the Botzmann constant and T is the temperature), we will 

have diffusive type kinetics. However, the chemical barriers in most enzymes are higher 

than 10 kcal/mol, which represents the diffusion limit, and thus are likely to determine 

the overall rate.   

 The finding of a shallow folding landscape might be considered as support for the 

idea that coupled motions contribute to catalysis (ref. (17) and references given in that 

work). However, as argued in our recent papers, (2, 16) all reactions involve coupled 

motions, and properly preorganized active sites have in fact evolved to minimize motions 

along the reaction coordinate rather than to maximize them. To further explore this idea, 

we calculated the coordinate vectors for the conformational change along the folding 

coordinate (from a partially unfolded to a folded structure) as well as the chemical 
reaction coordinate (evaluated between the reactant and product EVB states). Theses two 

multidimensional vectors calculated in the monomer are illustrated in Fig. S2 in SI; as 

seen in the figure, the two vectors are nearly perpendicular when the conformational 

motion is defined by the vector that takes the system from the native structure to a 

partially unfolded structure with Rg  15 Å and %CO  20 (Fig. S2b in SI). The situation 

is somewhat different when the protein is almost completely folded (Fig. S2b in SI), 

indicating that the folding coordinate is not coupled to the chemical reaction coordinate. 

This finding is also relevant to the idea that motions in the landscape of the monomer 

constitute dynamical contributions to catalysis. That is, although there are motions on the 

millisecond timescale in the monomer (the rate constant for conversion of the initial 

encounter complex between mMjCM and the TSA to give the high affinity complex, k2 =

5.4 s-1 (10), is similar in magnitude to the turnover number for catalysis, kcat = 3.2 s-1), it 

is hard to see how these motions might be coupled to the chemical step. 
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It should be emphasized that this study has not explored what happens when the 

barrier for the binding step is higher than the chemical barrier, since this does not seem to 

be the case in CM. That is, even with the above k2 and kcat values, the chemical barrier is 

not much smaller than the binding barrier. Here we have to realize that there is no 

evolutionary pressure to reduce the chemical barrier for an enzyme-catalyzed reaction 

much below the diffusion controlled limit. As a consequence, it is unlikely that the 

chemical barrier will ever be much lower that the binding barrier. Thus, it is unlikely that 

the physics of our model will change significantly unless we reach the limit with a 

chemical barrier much smaller than the binding barrier (a case modeled recently (7)). 

There is currently significant interest in the role induced fit plays in catalysis and 

fidelity (see discussion in ref. (4))  and here we have a clear case of induced fit. However, 

the induced fit idea does not explain chemical catalysis since chemical catalysis (kcat) is 

about the barrier for the chemical step in the ES complex and not about the fact that the 

binding of a substrate might help in preorganizing the active site, which obviously 

happens in the present case. Now, the issue in the case of the monomer is not the rather 

obvious finding that a positively charged active site is preorganized upon binding to a 

negatively charged substrate, but the fact that several configurations are able to provide a 

similar preorganization. This finding is new and potentially very useful. 

IV. Perspectives

This work has explored several fundamental aspects of the relationship between 

folding and catalytic landscapes, focusing on a comparison of an engineered but 

intrinsically disordered CM monomer and its native dimeric counterpart and exploring 

the observation that the molten globule protein can provide as much catalysis as the 

conventionally folded enzyme. Although the experimental findings may seem puzzling in 

view of the general assumption that an enzyme active site should be perfectly folded in 

the enzyme-substrate complex state, the present work demonstrates (in agreement with 

experiment) that the relatively flat folding landscape for the monomer acquires a deeper 
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minimum upon binding of the TSA.  In contrast, in the case of the dimer, the surface has 

a clear minimum even in the absence of a ligand. 

There is significant interest in the relationship between single molecule experiments 

and the nature of protein fluctuations and landscapes. A recent study of Prakash and 

Marcus (19), who focused on the relationship between electrostatic fluctuations and 

observed dielectric dispersion experiments, is particularly germane to our analysis. They 

determined the behavior of the autocorrelation function C(t) of the electrostatic energy 

gap between the reactant and product state, which determines the rate constant (see (19)). 

The next challenge is to reproduce the relevant information from actual simulations. 

Now, the behavior of C(t) on short timescales (nanoseconds) can be determined from  the   

electrostatic fluctuations of the EVB energy gap obtained in the simulations of the 

activation barriers (2). However, the long-term behavior of the autocorrelation function is 

partially determined by the barriers along the configurational coordinate (the black dash 

barriers in Fig 6 (a)) and the fluctuations along these barriers. Thus, determining the 

configurational barrier and defining a “metric” for the distance between the different 

configurations will be extremely useful for modeling the fluctuations of the chemical 

barriers. This can provide a more molecular insight in the interpretation of single 

molecule experiments. In fact, a promising option for determining the behavior of C(t) 
over long time scales may involve using some Langevin dynamics approach to estimate 

the slow electrostatic fluctuations due to transfer between different protein  

configurations.

Although the present work has focused on a microscopic catalytic landscape, it 

illustrates the potential of using a simplified model in studies of enzyme catalysis. For 

example, we can use the simplified model for fast exploration of the effect of charged 

mutations (20) and then evaluate the free energy of moving from the simplified to the 

explicit model at the TS region. This strategy should be useful for more systematic 

studies of the relationship between the protein folding and catalysis and in computer-

aided enzyme design 
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V. Methods 

 In order to explore the landscape effects and the probability of being at different 

configurations, it is important to be able to sample the protein configurational space in an 

efficient way. At present, it is hard to accomplish this task with all atom models and one 

viable option involves the use of a simplified protein model of the type used in 

simulations of protein folding (e.g.(21-26)). The version used in the present work is 

similar to that described in ref (15, 16). The simplified model is created by replacing the 

explicit side chain of each residue by an effective unified “atom” and an additional 

dummy atom. The unified atoms are placed at the center of mass of the corresponding 

side chains (with a residue dependent charge and van der Waals parameters), and the 

dummy atoms are placed along the corresponding C  - C  vectors and serve as tools for 

rotational transformations in the process of moving between the simplified and explicit 
models. The dummy atoms do not have any charge or van der Waals interactions with the 

rest of the system. The backbone atoms of each residue are treated explicitly, and the 

interactions between main chain atoms are identical to those used in the explicit model. 

The potential surface of the simplified model is described elsewhere (16) and is written 

as:

self
solvationsidesidesidemainmainsimplified UUUUU +++= −−                                                    (1) 

mainU  describes the potential energy for the main chain and is basically the force field 

used in our explicit simulation, which is a standard part of the MOLARIS software 

package (27). sidesideU −  describes the interaction between the side chains and is based on 

an “8-6” potential (as reported in ref(15, 16)). The sidemainU −  term describes the 

interaction between the effective side chains and the main chain atoms, whereas self
solvationU

accounts for the change in the solvation energy of each of these groups upon moving 

from water to its protein site. 

 This simplified model can be used to determine the free energy of the protein as a 
function of any given set of coordinates (e.g., contact order, native contacts, or native 
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hydrogen bonds (28, 29)). In the present case, we evaluated the free energy landscape in 

terms of two parameters, the radius of gyration (Rg) and the contact order (CO) (28), 

which are defined by : 

∆=
N

jiZ
LN

CO ,
1                (2) 

where N is the total number of contacts in the protein, ∆Zi,j is the number of residues 

separating contacts j and i, and L is the number of residues in the protein. 

The free energy surface was evaluated by using the free energy perturbation umbrella 

sampling (FEP/US) method (30, 31) in the same way as in our previous study (16) as a 

function of the radius of gyration, Rg, and sorting the results in two dimensions (X1=Rg,

X2=CO). The starting points for the free energy landscapes were taken as the structure of 

the simplified model after 200 ps of equilibration. Starting from this structure, we 

obtained the free energy surfaces, following the above FEP/US method and applying a 

force constant of 100 kcal/mol·Å2 by unfolding the systems by increasing their Rg along 

21 frames of 60 ps each at 300 K and with 1 fs time step.   

A crucial element of our study is the evaluation of the barrier for the chemical step in 
different protein conformations. The reaction (see Fig. 1) was described by the empirical 

valence bond (EVB) approach using the same treatment employed in our previous EVB 

studies of CM (32) with the MOLARIS simulation program (27) using the ENZYMIX 

force field. The EVB activation barriers were calculated at the configurations selected by 

using the same free energy perturbation umbrella sampling (FEP/US) approach used in 

all of our EVB studies. The simulation systems were solvated by the surface constrained 

all atom solvent (SCAAS) model (see ref. (27)) using a radius for the explicit region of 

18 Å , while long-range electrostatic effects were treated by the local reaction field (LRF) 

method (see ref. (27)). The FEP mapping was evaluated by 21 frames of 20 ps each for 

moving along the reaction coordinate with our all atom surface constrained spherical 

model. All the simulations were done at 300 K with a time step of 1 fs. Four catalytic 

residues that interact with the substrate (the catalytic residues) (Arg 9, Arg 34, Lys 45, 

Glu 58 in the monomer and Arg 11, Arg 28, Lys 39, Glu 52 in the dimer) were 

considered ionized.
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 The problem is, of course, to relate the activation barriers of the chemical steps to the 

corresponding regions on the free energy landscape. Here we exploited the simplified 

folding model as a reference potential for studies of the free energy surface of the explicit 

model (15, 16). This was done by taking points from the simplified landscape of the 

protein + TSA system, generating from them explicit models, and then calculating the 

full EVB profile starting from the given relaxed explicit model. Our preliminary 

exploration of this approach indicated that the lowest free energy region in the simplified 

model (minimum region) did not produce the best catalytic configurations, because the 

simplified enzyme substrate model has not been refined sufficiently in terms of protein-

substrate interactions. This does not pose a fundamental problem, however, since the 

simplified model is only used as a reference potential for calculations of the explicit 

landscape. Thus, any variation of the simplified potential is allowed, provided that one 

can get the difference between the simplified and explicit potentials (and use it to 

determine the free energy of moving from the simplified to the explicit model). To that 

end, we added an additional term (U’), the reflected constraint on the distance between 

the catalytic residues and the substrate, to the simplified potential: 

2
,0

'' )(KU −=
i

ii rr                  (3) 

where the r0,i   are the distances between key charged residues and the substrate in the 

simplified model generated from the original X-ray structure. In principle, we could 

evaluate the free energy landscape of the simplified model in terms of (Rg, CO and U’)

and then calculate the free energy of moving from the simplified model to the explicit 

model. However, at this stage we use U’ mainly to explore different ranges in the overall 

landscape. 
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Footnotes
§Computations were performed with EcCM rather than MjCM, which is more closely 

related to the monomer, due to the absence of detailed three-dimensional structural 

information for MjCM. Because EcCM is mesostable, wherease MjCM is thermostable, 

differences between the monomer and the EcCM dimer are probably less pronounced 

than the corresponding differences between the monomer and the MjCM enzyme. 
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Figure legends

Figure. 1. Rearrangement of chorismate to prephenate via a chair-like transition state. 

Figure. 2. Three-dimensional structural representation of dimeric EcCM (left) and 

monomeric mMjCM (right). The active site is occupied by the transition state analog 

(TSA), which is represented as a ball-and-stick model in both structures. 

 Figure 3. Free energy landscapes for the monomeric (mMjCM) and dimeric (EcCM) 

enzymes in the absence of TSA (a) and in the presence of TSA (b). The free energy 

surface is represented in terms of the radius of gyration (Rg) and the percentage contact 

order (%CO). Energies are expressed in kcal/mol and distances in Å.

Figure. 4. The distribution of activation barriers for the monomer and dimer for different 

regions of the folding landscape. Region I was generated from the native mMjCM and 

EcCM structures; region II corresponds to low energy structures obtained by the 

simplified model (see A in Fig. S1 in SI); and region III corresponds to higher energy 

structures from the simplified landscape (see Fig. S1 in SI). The average RMSD of 

structures in these regions are 0.9 Å, 3.6 Å and 5.3 Å, respectively. The figure describes 

the probability of having a given value of the activation barrier as a function of the value 
of the activation barrier. 

Figure. 5. The correlation between the calculated activation barriers (∆g‡) and the 

calculated reorganization energy (λ) for the monomer (a) and the dimer (b). 

Figure. 6. The landscape for the chemical profiles for the monomer (a) and the dimer (b). 

The arrangement of the profiles, in equal spacing, is according to the RMSD from the 

native structure for the three regions (I, II and III). The dash line in orange designates the 

16 kcal/mol height that corresponds to reasonably low barriers. This line allows one to 

see that the monomer has several catalytic configurations in the second region while the 

dimer does not have any (see also Fig. 4). The figure also represents in black dash lines 
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the barriers between the conformational states along the conformational coordinate. RS 

designates reactant state and TS transition state. 
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