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ANALYSIS OF TEMPORAL AND SPATIAL VARIATION OF FOREST 

 

                                             A case of study in northeastern Armenia 

 

 

ABSTRACT 

 

The forest has a crucial ecological role and the continuous forest loss can cause colossal 

effects on the environment. As Armenia is one of the low forest covered countries in the 

world, this problem is more critical. Continuous forest disturbances mainly caused by illegal 

logging started from the early 1990s had a huge damage on the forest ecosystem by 

decreasing the forest productivity and making more areas vulnerable to erosion. Another 

aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate 

estimation of the level of cuts in some years. 

In order to have insight about the forest and the disturbances in the long period of time we 

used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an 

online tool enabling the access and analysis of a great amount of satellite imagery. 

To overcome the data availability problem caused by the  gap in the Landsat series in 1988-

1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based 

compositing for the temporal window of leaf on vegetation (June-late September). 

Subsequently, pixel based linear regression analyses were performed.  

Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were 

used for trend analysis. 

In order to derive the disturbances only in forests, forest cover layer was aggregated and the 

original composites were masked.  It has been found, that around 23% of forests were 

disturbed during the study period.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Theoretical Framework 

 Deforestation and forest degradation are one of the biggest environmental problems and their 

impact can be colossal.  Forests, the most complex terrestrial ecosystems on the earth,   have 

an important ecological role in the conservation of biological diversity, they store a vast 

amount of carbon, prevent soil erosion.  

Forest cover changes, especially those of anthropogenic origin, have broad impacts on 

critical environmental processes including Earth's energy balance, water cycle, and 

biogeochemical processes. Quantifying such changes is required for addressing many 

pressing issues including the global carbon budget, ecosystem dynamics, sustainability, and 

the vulnerability of natural and human systems (Huang et al., 2008). 

 Scientists and policy makers from various institutions and agencies are currently devoting 

substantial time and resources to study the implications of the environmental change in 

forests and woodlands, the most widely distributed ecosystem on earth (Rogan et al., 2006). 

Forests provide key ecological goods and services for many other plants and animals, as well 

as for humans (Weng, 2011). Consequently, the reduction of the forested area can have 

dramatic outcomes. Although the rate of deforestation shows signs of decreasing, it is still 

alarmingly high. It shows signs of decreasing in several countries but continues at a high rate 

in others (FAO, 2010). 

In general, deforestation has been attributed to socio-demographic factors, such as population 

growth, economy and specific exploitation activities like commercial logging, forest farming, 

fuel wood gathering, and pasture clearance for cattle production (FAO, 2007).  

The current state of deforestation is critical in Armenia as well. The Armenian forests are 

under the highest socioeconomic pressures, threat of degradation or destruction (Moreno-

Sanchez et al., 2007). This is due to uncontrolled forest logging, which was at its peak 

starting from early 1990s. As reported by the Armenian tree project, Armenia is facing one of 

the worst ecological threats. In fact, over 750,000 cubic meters of forest coverage are now 

being cut annually. At the current rate of deforestation, Armenia faces the probability of 

turning into a barren desert within 50 years (Armenian tree project, 2013). Hergnyan et al., 

(2006) stated that Armenia is one of the 70 low forest-covered countries, as the forests cover 
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is less than 10% of the total land area.  Hence, the continuing deforestation of forest 

resources presents a significant environmental threat combined with destroying consequences 

for habitats, irreversible losses of biodiversity, lost revenue of the government from the 

alternative benefits of the forest (e.g. tourism development). The economic crisis and the 

drastic socio-economic conditions, along with the poor implementation of forest management 

and monitoring policies throughout the 1990s have resulted in massive deforestation of the 

country. Due to the strengthened state control during the recent years the logging volumes 

have decreased. However, the overall decrease of the forest resources is still progressing, 

despite the major efforts of international and local organizations towards intensive 

reforestation. Taking into account economic, social and political conditions in the country,   

Moreno-Sanchez et al., (2005) predict that the decline of the forest will continue and it will 

probably accelerate.  

Because of absence of continuous forest monitoring in the study area, there is a need of 

studies which will reveal the current state of forest ecosystems, rate of deforestation, 

disturbances during long period and it can give essential contribution in decision making for 

sustainable use of forest. To achieve this aim, remotely sensed data can be used.  

Remote Sensing provides a unique opportunity to assess and monitor deforestation, 

degradation, and fragmentation for a number of reasons. First, it allows detailed study from 

local level to global forest resources assessment. Furthermore, remotely sensed data can be 

acquired repeatedly (e.g. daily, monthly), which helps to monitor forest resources in a regular 

basis (FAO, 2007). Both the gradual changes of forest succession and the sudden change of 

deforestation due to anthropogenic (e.g., timber harvesting) or natural (e.g., fire) disturbances 

can be detected by satellite imagery. It is usually quite straightforward to map deforestation 

with Landsat TM/ETM+ imagery as a result of dramatic change in surface reflectance before 

and after the disturbance (Weng 2011). 

The increasing availability of satellite imagery with different spatial, spectral and temporal 

characteristics and the development of data analysis methods give a chance for having better 

idea about forest change patterns.  In several studies the potential of detecting changes within 

time series is shown, which benefits from temporal depth of satellite imagery and gives an 

idea about trends of changes. 
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1.2  Statement of the Problem 

The last few decades have seen a reduction of the extent and quality of the forest cover in 

Armenia. Years of unsustainable and illegal logging have reduced both forest quantity and 

quality. Following the independence, an energy crisis led to significant deforestation, 

reducing Armenia’s already minimal forest cover.  

The decade of the 1990s was harsh and turbulent in Armenia. In 1991 Armenia got its 

independence from the former USSR. During the following year the country experienced 

political violence and several economic shocks. The separation from the USSR, compounded 

by a devastating earthquake in 1988, and the 1988-1994 war with the neighboring Republic 

of Azerbaijan created a transportation, economic and energy blockade. This situation put a 

tremendous pressure on the forests as source of fuel wood. It is estimated that during the 

1990s nearly 50% of the energy consumed in households near to forested areas came from 

fuel wood. As a result, the most valuable species of trees were logged (Thuresson et al., 

1999; Moreno-Sanchez et al., 2005; Junge & Fripp 2011).  

There is no accurate estimation of the level of cuts during that period and the estimations are 

different from author to author. More trustful information about forest logging is available 

from late 1990s. Another threat for forest is the copper mining, which occupies large forested 

areas in northeastern Armenia. 

Figure 1 illustrates the volume of cuts from 1999 till nowadays. The values are aggregated 

from different sources (Moreno-Sanchez et al., 2005; Hergnyan et al., 2006; Hayantar 2014), 

and they approximate the available data. Although, the economic conditions in the country 

have been improved, the volume of cuts remained high for a few years and slowly has been 

stabilizing in recent years. 

Although there were some studies on forest degradation in Armenia, only few of them have 

used geospatial technologies to reveal forest disturbance level.  One of the latest studies in 

the north-eastern area of Armenia shows the change in forest cover in the study area and 

estimates the change from ~25% in 1989 to ~19% in the year 2000 (Asiryan, 2005).  

The understanding of seriousness of this problem and the lack of research aiming to detect 

the deforestation and the forest degradation and making further analysis were the main 

motivation to do this thesis research. Furthermore, the existing studies focus on spatial 

change and depict the change from 2 time steps. In this thesis study not only the spatial 

changes of the forest are discussed, but also the temporal context of change is considered. 
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Figure 1: The volume of forest logging in Armenia derived from available sources 

Moreno-Sanchez et al., (2005); Hergnyan et al., (2006); Hayantar (2014) 

 

 

1.3  Study Area at glance 

The study area is located in the north-eastern part of Armenia. The area comprises the biggest 

forested areas in Armenia. At the same time this area is described as one of the most 

vulnerable areas to deforestation and forest degradation.  

 The main deforestation threats are fuel wood gathering, infrastructure and mining. 

Deforestation in this area is expressed as clear cuts around the large cities. Another major 

feature of deforestation process is the accelerated rates of forest fragmentation. The 

increasingly complex shapes of large forest patches distort the forestry estimates: the forest 

degradation continues leaving the surface of forest cover relatively unchanged (Hergnyan et 

al., 2006). In addition to anthropogenic disturbances, large areas of forests are destroyed by 

natural causes: wind, erosion and landslides, forest fires.  Large areas of forest disturbances 

caused by wind were reported in 2004 and 2007 (Hayantar, 2014). Figure 2 illustrates wind 

fallen trees in 2007. 
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1. With the use of Landsat data forest cover change analysis and trend detection can be 

performed. 

2. There is a distinct negative trend in forest cover change. 

 

In order to achieve the above mentioned research goals and objectives, the following research 

questions need to be reflected on:  

 

  Is it possible to detect patterns and trends of forest changes in local scale using 

temporally dense Landsat collections? How scientifically robust is the use of those data 

to identify the changes in the study area taking into account the limitations of study? 

 What kind of techniques could be used to analyze forest cover change?  Are those 

methods relevant for research in local scale? 

 What is the trend of forest cover change in study area? 
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1.5   Thesis Organization 

 

Table 1: The summary of the thesis 

 

 

Is it possible to detect patterns and trends of forest changes in local scale 

using temporally dense Landsat collections?  

	

P
R

O
B

L
E

M
 

Hypothesis	1	
	

With the use of Landsat data forest 
cover change analysis and trend 

detection can be performed 

Hypothesis	2	
	

There is a distinct negative trend in 
forest cover change	

H
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S

 

Theoretical	study:	
	

‐	Literature	
‐	Reading	and	information	gathering	

‐	Definition	of	concepts	
	
	
	
	

Empirical	study:	
	

‐	Case	Study	
‐	Performing	analysis	in	Google Earth 

Engine	
‐	Validation	
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Developing	the	theoretical	background	which	will	be	the	basis	for	the	
study	
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Implementing	the	algorithm	in	order	to	find	the	forest	disturbances	
during	the	study	period	
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Table 1 sum up the key points of the thesis. To achieve previously discussed goals and 

objectives the master thesis consists of six chapters: 

Chapter 1: Introduction 

Chapter 1 includes the background and the research problem.  It comprises the objectives of 

the study, research questions and gives an idea about the study area.  

Chapter 2: Concepts and definitions 

Chapter two refers the description of general concepts and definitions that are essential for 

this research. Furthermore extensive literature review is included, which gives detailed 

information about the related studies. 

Chapter 3: Methodology 

Chapter three contains the main methodological approaches and steps that are followed for 

achieving previously discussed goals. It gives detailed description of study area as well as the 

data that are used for study. The description of tools and programming environment is also 

included.  The study limitations and constraints are also described in this chapter.  

Chapter 4: Data preparation 

Chapter four comprises the descriptions of steps of remotely sensed data preprocessing and 

preparation. 

Chapter 5: Detection of forest disturbance and trend analysis 

In chapter five the steps of forest change detection and temporal trend analyses are described. 

There is a detailed description of the vegetation indices that have been used. Afterwards the 

main steps of implementation of linear regression model and the assessment of the analysis 

are described. 

Chapter 6: Results and discussion 

Chapter six summarizes research findings. Main advantages and disadvantages of used 

methods are discussed. In addition, some recommendations for further analysis are included. 
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CHAPTER TWO 

CONCEPTS AND DEFINITIONS 

 

2.1 The Use of remotely Sensed Data for Forest Monitoring 

Various studies have been undertaken in the area of land use and land cover change analysis 

and particularly for forest change analysis with the use of remotely sensed data. Relating the 

spectral changes among multi temporal satellite data sets to changes in surface features and 

biophysical variables has long been an important application of remote sensing technology 

(Hayes & Cohen, 2007). The increasing availability of remotely sensed data and the 

improvement of data resolution make it even more useful for forest monitoring.  

In general, ecosystems can be described by their condition (their state) and by how they are 

changing (their temporal dynamics). Remotely sensed data can be successfully used for both 

purposes across the number of ecosystem types, including forest (Cohen et al., 2004).  Forest 

change mapping and monitoring is feasible when changes in the forest attributes of interest 

result in detectable changes in image radiance, emitance, or microwave backscatter values 

(Rogan et al., 2006). Furthermore, the consistent and objective nature of remote sensing 

measurements allows unbiased comparison of forest disturbances (Griffiths et al., 2012). 

Several methods were developed for this aim: manual interpretation, algebraic methods 

(image differencing, image regression, image ratioing, vegetation index differencing), 

transformations, thematic classification, post classification change detection, with the use of 

remotely sensed data from variety of sensors as different states of the land surface can be 

measured by satellite-derived biophysical parameters (Rogan et al., 2006; FAO 2007; Forkel 

et al., 2013).   

Change detection approaches can be categorized into two broad groups: bi-temporal change 

detection and temporal trajectory analysis. Almost all classifications for change detection 

algorithms are based on bi-temporal change detection and little care for temporal trajectory 

analysis. For bi-temporal images, any kind of change detection algorithm can be attributed to 

one of the following methods: directly compare different data sources, compare extracted 

information and detect changes by bringing all the data sources into a uniform model. 

Temporal trajectory analysis can be decomposed into bi-temporal change detection and long 

time-series analysis (Jianya et al., 2008). 

The most common approaches used in change detection have included the post classification 

comparison of two dates of land cover classifications and the simple two-date, univariate 
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differencing of single bands or band ratios. Multivariate techniques that incorporate more 

spectral information in the change detection algorithm often produce improved results. 

Examples include clustering of multi temporal composite images and the use of multivariate 

transformations such as the tasseled cap, principal components analysis and the less used 

canonical correlation analysis (Hayes & Cohen, 2007). 

In their study Hirschmugl et al., (2014) describe the methods that can be used for mapping 

forest degradation from optical data: simple spectral band values, vegetation indices, 

proximity to new roads (context analysis), or more advanced tools, such as spectral mixture 

analysis and related indices, such as the Normalized Difference Fraction Index, or different 

combinations of these features.  

An important issue for forest change detection and analysis is the selection of satellite 

imagery. The choice of the imagery depends on many factors such as the objectives of the 

research, characteristics of study area, spatio-temporal resolution of imagery and the costs. If 

the study is focused on temporal trajectory analysis, forest change analysis is mostly based on 

low spatial resolution images such as AVHRR and MODIS, which have a high temporal 

resolution (Jianya et al., 2008). 

 Another widely used data for forest change analysis is Landsat imagery. The spatial 

resolution of imagery is informative of human activities on the Earth surface and it has made 

Landsat invaluable information source for science, management and policy development 

(Wulder et al., 2011).  Forest change detection with Landsat has a history as long as the 

Landsat program itself (Cohen et al., 2010).  The 30 m pixel size of the Landsat TM and 

ETM+ sensors makes them suitable to characterize the land-cover change resulting from 

natural and anthropogenic activities.  

The number and placement of spectral bands is also an important advantage over other similar 

sensors and the spectral information of vegetation in Landsat TM and ETM+ imagery is 

primarily determined by the designation of spectral bands as seen in Table 2. The Thematic 

mapper (TM) and Enhanced thematic mapper (ETM+) sensors acquire the images in visible, 

near infrared and shortwave infrared portions of the electromagnetic spectrum, making them 

appropriate for studies of vegetation properties across a wide range of vegetation 

communities, in diverse environments (Bhandari et al., 2012). In Table 2 the spectral 

characteristics of Landsat TM and ETM+ are described (Landsat missions, USGS, 2014). In 

the first three bands, reflected energy from vegetation is determined by the concentration of 

leaf pigment. Leaves strongly absorb solar radiation in the visible spectrum, particularly the 

red spectrum, for photosynthesis. The forth band in near-infrared (NIR) region of solar 
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spectrum, to which healthy green leaves are highly reflective. In fact, the contrast in leaf 

reflectance between the red and NIR spectra is a physical basis for numerous vegetation 

indices using optical remote sensing. The two mid-infrared bands relate to the moisture 

content in healthy vegetation (Weng, 2011). These two bands are also very sensitive to 

vegetation density, especially in the early stages of clear cut regeneration.  

 

Table 2:  The spectral characteristics of Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) 

 

 
Band 

 
Wavelength 

 
Useful for mapping 

Band 1 - blue 0.45-0.52 Bathymetric mapping, distinguishing soil from 
vegetation and deciduous from coniferous 
vegetation 

Band 2 - green 0.52-0.60 Emphasizes peak vegetation, which is useful for 
assessing plant vigor 

Band 3 - red 0.63-0.69 Discriminates vegetation slopes 

Band 4 - Near Infrared 0.77-0.90 Emphasizes biomass content and shorelines 

Band 5 - Short-wave 
Infrared 

1.55-1.75 Discriminates moisture content of soil and 
vegetation; penetrates thin clouds 

Band 6 - Thermal 
Infrared 

10.40-12.50 Thermal mapping and estimated soil moisture 

Band 7 - Short-wave 
Infrared 

2.09-2.35 Hydrothermally altered rocks associated with 
mineral deposits 

Band 8 - Panchromatic 
(Landsat 7 only) 

.52-.90 15 meter resolution, sharper image definition 

 

Recent studies (Vogelmann et al., 2012; Verbesselt et al., 2012) introduces to four general 

categories of vegetative changes, which can be monitored using remotely sensed data: 

 abrupt change 

 seasonal change 

 gradual ecosystem change  

 short-term inconsequential change 



 
 

12 
 

 

All four types of changes can alter vegetative spectral properties, and depending on the goals 

of the investigation, can necessitate the use of different approaches and ancillary data to map 

them effectively.  

Abrupt changes are the result of changes caused by landscape transforming disturbance 

events, such as those related to logging, deforestation, agricultural expansion, urbanization, 

and fire. In general, these types of events radically alter the spectral properties of the land 

surface, and are readily discernible in Landsat imagery.  

Seasonal change relates to the cyclical intra- and inter-annual patterns of phenology, whereby 

seasonality influences vegetation condition in predictable and mostly repeatable patterns of 

green-up and senescence. Similar to abrupt change, phenological change can have marked 

impacts on spectral characteristics of the vegetation, and tend to be especially pronounced in 

deciduous forest. 

Gradual ecosystem change relates to subtle within-state changes taking place in vegetation 

communities that are not related to normal phenological cycles. These include a variety of 

within state disturbances, such as vegetation damage caused by insects and disease, drought 

and storms, changes in plant communities related to natural succession, grazing pressure, and 

climate-induced biome shifts. 

The last group of changes is short-term inconsequential vegetative change which is a number 

of events that cause vegetative spectral changes not perceived as having long-term ecological 

importance. These include rain-fall events that affect spectral properties of the soil 

background wind that affects leaf angles during the time of data acquisition), and light frost 

or snow on conifer vegetation at high elevations, occurring especially during the beginning 

and end of the growing season. These events may be considered as noise by most analysts as 

they can have marked impacts on the spectral properties of the data sets being analyzed, 

which can in turn alter interpretations and create a level of uncertainty in remotely sensed 

data sets and derived change products. These types of changes tend to be difficult to 

characterize, and are largely ignored in most change investigations. 

Another change that is taking place in forest areas is forest growth which is always a gradual 

process. Establishment of forest stand always takes time, and trees continue to grow after the 

stand is established (Weng, 2011). 

Vogelmann et al., (2012) discuss the use of Landsat imagery for forest change analysis and 

they depict that Landsat imagery is applicable for detecting abrupt and gradual ecosystem 

changes. Landsat is not the ideal sensor for investigations of seasonal changes due to the 
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difficulty in acquiring enough quality cloud-free data sets to adequately characterize the 

phenological variability within an ecosystem. Nevertheless, Landsat data provide useful 

complementary data when used in conjunction with the high temporal resolution data in 

phenological assessments. 

With few exceptions, most research with the use of Landsat imagery have focused on 3–10 

years or greater image intervals and one or two Landsat scenes (Cohen et al., 2010). Similar 

research was also done for north eastern Armenia. Asiryan (2005) shows data analysis for the 

purposes of forest cover change detection for the surrounding areas of Vanadzor city (north-

east Armenia). Two satellite images (Landsat TM/1989 and Landsat ETM+/2000) were 

processed and analyzed. The results indicated that a significant change in land cover occurred 

between the 1989 and the 2000. In particular, the analysis revealed the reduction of 

vegetative cover in the study area.  

But as it was shown by Verbesselt et al., (2010), conventional bi-temporal change analysis is 

not sufficient as most of the methods focus on short image time series. The risk of 

confounding variability with change is high with infrequent images, since disturbances can 

occur in between image acquisitions. Similar study clearly highlights the considerable 

advantages that the annual temporal resolution of the Landsat time series holds over bi- or 

multi temporal change detection approaches. For example, a change map at five or 10-year 

interval would not have been able to distinguish a large disturbance occurring in a single year 

from individual patches clustering to a large area over time (Griffiths et al., 2012). 

In addition, although many disturbances often result in abrupt spectral changes that are 

relatively easy to detect using satellite images acquired before and immediately after each 

disturbance, the spectral change signals often become obscured and eventually undetectable 

as trees grow back following those disturbances. As a result, forest change products derived 

using temporally sparse observations typically have considerable omission error (Weng, 

2011).  In another study of Verbesselt et al., (2012) was described that detecting changes 

within time series is the step towards understanding the acting processes and drivers (e.g., 

natural or anthropogenic). The detailed use of this method is described in the following 

sections. 
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2.2 Forest and Deforestation 

Before studying the techniques for analyzing spatial and temporal variations of forest, it is 

important to distinguish the main concepts regarding forest degradation and deforestation. 

There are many definitions and here some of them are described which gives better insight 

and understanding of those processes.  

1. Forest: Moreno-Sanchez et al., (2007) define the terms forest cover or forest to 

denote high forests (natural or created by plantations) dominated by tree species. The 

definition of forest is critical for this study as it defines the area where the changes are 

estimated.    

2. Forest change: In the context of environmental remote sensing, forest change, 

manifested as forest attribute modification or conversion, can occur at every temporal and 

spatial scale, and changes at local scales can have cumulative impacts at broader scales 

(Rogan et al., 2006).  

FAO (2007) specifies the differences of deforestation and forest degradation, which are 

another crucial terms. 

3. Deforestation: The conversion of forested areas to non-forest land use such as arable 

land, urban use, logged area or wasteland. According to Food and Agriculture Organization 

of the United Nations (FAO), deforestation is the conversion of forest to another land use or 

the long-term reduction of tree canopy cover below the 10% threshold. Deforestation defined 

broadly can include not only conversion to non-forest, but also degradation that reduces 

forest quality - the density and structure of the trees, the ecological services supplied, the 

biomass of plants and animals, the species diversity and the genetic diversity. Narrow 

definition of deforestation is: the removal of forest cover to an extent that allows for 

alternative land use. 

4. Forest degradation: The process leading to a temporary or permanent deterioration 

in the density or structure of vegetation cover or its species composition. It is a change in 

forest attributes that leads to a lower productive capacity caused by an increase in 

disturbances. The time-scale of processes of forest degradation is in the order of a few years 

to a few decades. In another study forest degradation was described as a reduction in the 

natural or desirable characteristics of a forest (e.g. age, classes, structure, density, or standing 

stock genetic quality) (Moreno-Sanchez et al., 2005). Taking into account the specialties of 

the study area and particular forest variations, this study is focused on detection of 

disturbances causing forest degradation. 
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5. Reforestation: Re-establishment of forest formations after a temporary condition 

with less than 10% canopy cover due to human-induced or natural perturbations. The 

definition of forest clearly states that forests under regeneration are considered as forests 

even if the canopy cover is temporarily below 10%. Many forest management regimes 

include clear-cutting followed by regeneration, and several natural processes, notably forest 

fires and windfalls, may lead to a temporary situation with less than 10 percent canopy cover. 

In these cases, the area is considered as forest, provided that the re-establishment (i.e. 

reforestation) to above 10 percent canopy cover takes place within the relatively near future. 

As for deforestation, the time frame is central. The concept temporary is central in this 

definition and is defined as less than ten years. 

 

2.3 Time Series Analysis 

The recent opening of the global Landsat archive by the United States Geological Survey 

(USGS) provides new opportunities to advance land use science and has sparked the 

development of new methodological approaches. For example, change detection methods 

based on annual Landsat time series (i.e. trajectory-based change detection methods) make 

better use of the temporal depth of the Landsat archive to reconstruct forest disturbance 

histories with annual resolution and to map trends, such as forest regeneration and 

succession. Likewise, annual time series of Landsat images can help to separate sudden from 

gradual vegetation change (Griffiths et al., 2012). Cohen et al., (2010), mentions about 

tremendous need for temporally and spatially detailed forest change information over vast 

areas for forest management and policy considerations. 

Estimating change from remotely sensed data series however is not straightforward, since 

time series contain a combination of seasonal, gradual and abrupt ecosystem changes 

occurring in parallel, in addition to noise that originates from the sensing environment (e.g., 

view angle), remnant geometric errors, atmospheric scatter and cloud (Verbesselt et al.,      

2012). 

One of the algorithms is a trajectory based change detection algorithm developed by Kennedy 

et al., (2007). The main premise of the method is the recognition that many phenomena 

associated with changes in land cover have distinctive temporal progressions both before and 

after the change event, and that these lead to characteristic temporal signatures in spectral 

space. Rather than search for single change events between two dates of imagery, they instead 

searched for idealized signatures in the entire temporal trajectory of spectral values. If an area 

fitted the idealized trajectory according to a simple least-squares measure of goodness of fit, it 
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is likely to have experienced the phenomenon described by that trajectory. Because the entire 

trajectory was considered, the method utilized the depth of rich image archives, and because 

detection was based on the fit of a curve, thresholds were based on a statistical metric that is 

internally calibrated to each pixel, avoiding the need for manual interpretation or intervention. 

Another study shows validation of North American forest disturbance dynamics derived from 

Landsat time series stacks with biennial time steps. For further analysis they use vegetation 

change tracker (VCT) algorithm specifically for mapping forest change using Landsat time 

series stuck or data sets that consist of temporally dense satellite acquisition. The algorithm 

consists of two major steps: 1) individual image analysis and 2) time series analysis (Thomas 

et al., 2011).  

Griffiths et al., (2012) discuss, that the analysis of an annual Landsat time series with 

trajectory-based change detection methods (such as LandTrendr) can provide deep insight 

into the effects of the institutional and socioeconomic changes on forests.  

Another complex approach is proposed for automated change detection in time series by 

detecting and characterizing Breaks For Additive Seasonal and Trend (BFAST) by Verbesselt 

et al., (2010). BFAST integrates the decomposition of time series into trend, seasonal, and 

remainder components with methods for detecting significant change within time series. 

BFAST iteratively estimates the time and number of changes, and characterizes change by its 

magnitude and direction. They tested BFAST by simulating 16-day composites of Normalized 

Difference Vegetation Index (NDVI) time series with varying amounts of seasonality and 

noise, and by adding abrupt changes at different times and magnitudes. This revealed that 

BFAST can robustly detect change with different magnitudes (>0.1 NDVI) within time series 

with different noise levels (0.01–0.07 σ) and seasonal amplitudes (0.1–0.5 NDVI) (Verbesselt 

et al., 2010). 

In several studies (Jin & Sader,  2005; Cohen et al., 2010; Verbesselt et al., 2012, Vogelmann 

et al., 2012; Forkel et al., 2013), trends in forest area were analyzed through image-derived 

vegetation index and transformations. 

Forest disturbances and their subsequent regeneration are often detected and mapped using 

spectral indices. These indices are mostly based on the short wave infrared (SWIR) and near 

infrared (NIR) reflectance, although forest disturbances can also be detected in the visible or 

thermal spectrums. NIR reflectance decreases with an elevated defoliation level and/or after 

forest dieback, because bark and soil reflectance is lower than the reflectance of needles or 

leaves. Disturbance detection may be complicated when the understory vegetation is not 

removed (e.g., by tree defoliation). The understory has a high NIR reflectance and thus may 
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compensate for the decrease in NIR reflectance resulting from forest disturbance. In contrast, 

the SWIR reflectance of forest stands is lower than that of the bark, soil, and understory, so 

SWIR reflectance increases after forest disturbance (Hais et al., 2009). 

Literature is replete with the most frequently used approach for detecting temporal trends: 

fitting linear regressions of a (temporally aggregated) vegetation index (VI) against time 

(Jong & Bruin, 2012). Vogelmann et al., (2012) describe the use of linear regression 

relationships on a pixel by pixel basis between time (x variable) and the vegetation index 

value (y variable) for selected pixels. They delineate that regression models with low slope 

value tend to not be statistically significant (no apparent change), whereas the models with 

high positive or negative slope values are more likely to be statistically significant. Results 

from this study indicate that analyses of Landsat time series data provide useful perspectives 

regarding long-term gradual ecosystem changes taking place across landscapes. All 

investigated areas showed evidence of significant trends in spectral change associated with 

the gradual loss and accrual of vegetation canopy cover.  

Change detection, however, is often complicated by a number of statistical preconditions that 

are intrinsic to time series of spectral vegetation indices with dense sampling intervals, but 

this needs to be done with care in order to avoid spurious trends. The detected slope can be 

used to calculate the amount of change, but it is not always tested for significant deviation 

from zero, nor standard statistical assumptions always respected. Seasonal variation is an 

important cause for the data to violate assumptions like homogeneous variation and absence 

of serial correlation in the residuals. In few cases linear models were fitted directly to seasonal 

data, but seasonality is typically remediated using temporal aggregation, where the 

aggregation window corresponds to the length of a calendar year. 

Large variation in detected changes was found for aggregation over bins that mismatched full 

lengths of vegetative cycles, which demonstrates that aperiodicity in the data may influence 

model results. Using VI data and aggregation over full-length periods, deviations in VI gains 

of less than 1% were found for annual periods (with respect to seasonally adjusted data), 

while deviations increased up to 24% for aggregation windows of 5 year. This demonstrates 

that temporal aggregation needs to be carried out with care in order to avoid spurious model 

results.  

The risk of artefacts is minimal at an aggregation level corresponding to a full period, for 

instance a calendar year. Coarser aggregation levels tend to overestimate the amount of 

change and result in higher variation in model predictions, especially from 3 periods onwards. 

However, the use of a full-period window may be impractical because VI time series are 
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hardly ever free of changes in seasonality. Aperiodicity within long-term time series of 

vegetation indices is intrinsic to certain land cover types and may arise from variations in start 

and length of growing seasons as a result of variations in temperature and/or precipitation 

(Jong & Bruin, 2012). 

In a latest study of Hansen et al., (2013) it was shown the use of time-series analysis of 

654,178 Landsat 7 ETM+ images in characterizing global forest extent and change from 2000 

through 2012. As a result tree cover, forest loss, and forest gain was shown during the study 

period. Percent tree cover, forest loss and forest gain training data were related to the time 

series metrics using a decision tree. Forest loss was disaggregated to annual time scales using 

a set of heuristics derived from the maximum annual decline in percent tree cover and the 

maximum annual decline in minimum growing season NDVI. Trends in annual forest loss 

were derived using an ordinary least squares slope of the regression of annual loss versus 

year. This study has significant role in forest change analysis because it has global coverage 

and the results can serve for validation of the current study. 

Given the limited availability of cloud	free Landsat data in some areas of the globe, epochal 

composites have been used extensively to support change detection studies. These 

composites represent a new paradigm in remote sensing that is no longer reliant on scene‐

based analysis (White et al., 2014). 

A time series of these image composites affords novel opportunities to generate information 

products characterizing land cover, land cover change, and forest structural attributes in a 

manner that is dynamic, transparent, systematic, repeatable, and spatially exhaustive.  

White et al., (2014) proposes three unique types of pixel‐based image composites:  

 annual (single‐year) composites,  

 multi‐year composites,  

 proxy‐value composites.  

Annual composites are surface reflectance composites that use the best available pixel 

observation (from the target year) for any given pixel location. Annual composites are 

produced using a set of specified rules that are defined according to the information need. For 

example, an annual composite may be designed to capture a specific time period or a limited 

phenological window. In addition to a day‐of‐year rule, rules may also constrain observations 

according to sensor, distance to cloud and cloud shadows, and atmospheric opacity (to reduce 

the impact of haze). If there are no observations that satisfy the compositing rules for a given 

pixel location, then the pixel is coded as "no data" and as a result, annual composites may 

have areas of missing data.  
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Multi‐year composites are generated according to a set of user‐specified rules; however, pixel 

observations from previous or subsequent years may be used when no suitable observation is 

found within a desired target year.  

Proxy value composites are annual composites where no data pixels are populated using a 

time series of annual composites to determine proxy values. Likewise, pixels with anomalous 

values those that exceed a pre‐defined range of expectation or which have opacity values 

indicative of hazy imagery may also be assigned a proxy value. In essence, the objective of 

the proxy value composite is to assign the most similar value in time and space to a pixel that 

either has no data or has an anomalous value. 
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CHAPTER THREE 

 METHODOLOGY 

 

3.1 Workflow 

From the review of other researches in the preceding chapter, it is logical to deduce that 

temporally dense satellite data can give better idea about trend in forest dynamics. 

Based on related studies the main steps of research were developed: 

 Data preparation and image preprocessing  

 Image processing  

 Detection and analysis of long term trend  

 Evaluation of spatial distribution of forest change 

 Validation of results 

The goal of preprocessing is to ensure that each pixel faithfully records the same type of 

measurement at the same geographic location over the time. Preprocessing is especially 

critical in change studies because the detection of change assumes that the spectral properties 

of non-changed areas are stable, and inadequate pre-processing can increase error by causing 

false change in spectral space (D. Lu & Q. Weng, 2007). This step includes radiometric 

corrections and cloud and shadow masking.  

Several studies have shown the impact of clouds and cloud shadows on vegetation change 

analysis. The pixels contaminated with cloud and shadow generally have sufficiently 

different reflectance properties than the actual land cover and produce erroneous information 

if used in an automated mapping algorithm (Bhandari et al., 2012). To eliminate this effect 

cloud masking function is implemented over the image collection. 

The data preparation step also includes the creation of image composites. Characteristics 

relevant to particular geographic regions, such as persistence of cloud cover, topography, 

dynamism of landscape processes, phenology, and Landsat data availability, are important 

considerations when applying a compositing approach. Likewise, different information needs 

(e.g., disturbance mapping, estimation of biophysical parameters) may dictate different 

compositing strategies, target dates, and compositing rules that are specific to the application. 

In general, it is desirable to generate composites that have consistent phenology with minimal 

no data pixels that best represent the phenomenon of interest (e.g., land cover classes, forest 

structural attributes, or specific disturbance events). 
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Pixel‐based image compositing of Landsat data has emerged from a unique confluence of 

scientific and operational developments, predicated by free and open access to the Landsat 

archive, and supported by computing and data storage capacity to fully automate radiometric 

and geometric pre‐ processing and create increasingly robust standardized image products 

(White et al., 2014). 

Many studies, like Cohen et al., (2010) stated, that the use of dense (nearly annual) Landsat 

time series allows characterization of vegetation change over large areas at an annual time 

step and at the spatial grain of anthropogenic disturbance. Additionally, it is more accurate in 

detection of subtle disturbances and improved characterization in terms of both timing and 

intensity.  Based on this, time series of Landsat images will be created.  It is worth to 

mention, that timing and the variation of vegetation phenology should be considered and as a 

result, the images should be chosen from the same time of the year and particularly  from 

peak growing season (early June to late September).  It is stated that images acquired outside 

this temporal window are generally not suitable for forest change analysis, because leaf off 

deciduous forests can be spectrally confused with disturbed forest land. (Weng,  2011). 

Time series of vegetation indices (VI) derived from satellite imagery provide a consistent 

monitoring system for terrestrial plant productivity. They enable detection and quantification 

of gradual changes within the time frame covered. The dependent variable Y can be any kind 

of VI or cyclical environmental parameter in general. (Jong & Bruin, 2012).  

For this study we used the NDVI, which is a commonly used proxy for terrestrial 

photosynthetic activity. To detect the partial harvests with better accuracy NDMI is also 

used. The following step is temporal trend analysis. Time series analysis of the rate of change 

of forest area is calculated using the slope estimate from linear regression. The slope 

indicates the strength of a trend in the change of forest. (Google Earth Engine API tutorial, 

2014). 

The spatial patterns and the distribution of forest change can be studied by using the results 

from image processing step. Afterwards the results are validated by comparing with ground 

truth forest harvest data and the data from yearly reports of annual reports of State forest 

monitoring center of Armenia (http://www.forest-monitoring.am/). 
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level. The forest cover is highly fragmented. The 62% of the forest cover is found in the 

northeast (Moreno-Sanchez et al. 2005). This was the primary reason of the study area 

choice, due to the fact that forests are mostly located in this part of the country, and as stated 

by Asiryan, (2005) this areas have suffered damage made over the last twenty years. 

The transformations and current state of the Armenian forests result from decades of 

management policies and forest use practices by several stakeholders and economic 

activities. Planned industrial production or use of the forests was very limited during the 

Soviet and independence periods (Moreno-Sanchez et al., 2007). The pressure on forest as a 

source of fuel abruptly increased after the independence due to economic blockage. Starting 

from these years the forest logging was uncontrolled. There was an attempt by authorities to 

control the forest harvest in order to lower the damage caused by cuts. To do so plans were 

made to supply fuel wood to the population during 1993. Before 1993, the fuel wood cut was 

fixed at 60 000 m3 per year. As a result, in 1993 the harvest was raised to 100 000 m3. In 

reality, this plan was difficult to realize because of fuel limitations, and the transportation of 

the wood to distribution areas was a major impediment. Estimates of the volume of the illegal 

cutting suggest that 700 000-1 000 000 m3 of wood were cut illegally in each of three winters 

1992-1995 (Sayadyan, 2007).  

 Thurresson et al., 1999 stated that forested areas close to population centers became the 

main source of fuel wood during the winters of 1991-1993 and were heavily damaged. Legal 

and illegal cuttings during 1991-1996 are estimated around 600 000 m3 per year. 

Illegal logging in Armenia is conducted mainly by local communities for survival through 

unauthorized timber extraction from the state forests. The timber consumed by rural 

households was estimated to be 568 000 solid m3 annually. The overall timber production 

was estimated 847 000 solid m3 in 2003, from which officially allowed and registered 

volume constituted 63 000 m3. Thus cuttings in average is 1 000 000 m3/year, which makes 

13 000 000-14 000 000 m3 for last 13-14 years (Sayadyan, 2007).  

According to “Hayantar” organization of the Ministry of Agriculture of the Republic of 

Armenia, which is the main organization responsible for conservation, protection, 

reproduction, use, registration and sustainable use of forest resources, currently there are 19 

forest units. For research, 9 forest units and 1 national park were chosen. The 9 forest units 

are Ijevan (20955.8 ha), Dsegh (14505.2 ha), Gugarq (10496.9 ha), Sevqar (18236.5 ha), 

Arcvaberd (38664.2ha), Noyemberyan (27001 ha), Lalvar (24339.5ha), Jiliza (13851.1ha), 

Tashir (5105.2 ha) and Dilijan national park (24000 ha) with more than 190 000 ha (1900 

square km) total area of forest. The area comprises the biggest and compacted part of 
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Armenia’s forest cover. Also this area is described as one of the most vulnerable to 

degradation. Figure 5 illustrates the location of study area in Armenia. 

 

 
Figure 4: Forest loss in the study area (Hansen et al., 2013) 

 
 

Figure 4 approximates the forest loss evaluated by Hansen et al., (2013). The data were 

accessed directly in GEE and tree loss per year was computed for the area of interest. All the 

other numbers and estimates are covering the forest loss in the overall area of Armenia. 

Those estimates are relevant, as the most of the forests are located in northeast. Figure 4 

provides additional insight about forest dynamics specifically in the study area. It is worth  

mentioning that forest loss evaluated by Hansen et al., (2013) have depicted considerably 

small value of loss in 2001-2012 (the small values can be accounted for by the global 

algorithm) but still it can give an idea about the trends and fluctuations of forest loss in 

northeastern Armenia. 
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Figurre 5: Locattion map off the study area  
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3.3 Materials and Tools 

For the study Landsat image collections are used. Data are accessed form Google’s public 

catalog, which contains a large amount of publicly available georeferenced imagery, 

including most of the Landsat archive (Google Earth Engine. API tutorial, 2014).  

For study two image collections are chosen from Landsat TM and ETM+ sensors. Table 3 

presents the main parameters of image collections. It should be stressed that data availability 

is presented for whole collection and imagery can be unavailable for specific regions and 

time period. As far as this study area is concerned, the data are missing for several years. 

The choice of Landsat is conditioned by several advantages. First, mission continuity: 

Landsat offers the longest-running time series of systematically collected remote sensing 

data. Second, the spatial resolution of the data facilitates characterization of land cover and 

the change associated with the grain of land management (Cohen & Goward, 2004), and the 

last, the affordability of data. 

 

Table 3 : Description of used imagery 

 

 

Data type Landsat TM Landsat ETM+ 

Image collection ID LANDSAT/LT5_L1T_TOA LANDSAT/LE7_L1T_TOA 

Spectral resolution 7 bands 8 bands 
 
Spatial resolution 
Panchromatic 
/multispectral 
/thermal 

/30 meters /60 meters 15 meters/30 meters/60 
meters 

Radiometric resolution 8 bit 8 bit 

Temporal resolution 16 days 16 days 

Data availability Jan 1, 1984 - May 5, 2012 Jan 1, 1999 - Oct 3, 2014 
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Above mentioned data collections provide data with Level L1T orthorectified scenes, using 

the computed top-of-atmosphere reflectance. The images are chosen from leaf-on vegetation 

season (early June-late September). In order to have continuous time series Landsat 7 SLC-

off images are also included (years after 2003). 

Remote sensing data preprocessing and analysis are carried out in Google Earth Engine 

JavaScript API. Google Earth Engine (GEE) is an online environmental data monitoring 

platform that incorporates data from the National Aeronautics and Space Administration 

(NASA) as well as the Landsat	Program. After the USGS opened access to its records of 

Landsat imagery in 2008, Google saw an opportunity to use its cloud computing resources to 

allow records of Landsat imagery to be accessed and processed over its online system. This 

has enable users to reduce processing times in analyses of Landsat imagery and make global 

scale Landsat projects more feasible (e.g., Hansen et al., 2013). The advantages of GEE can 

be summarized as: 

 Easily accessible satellite imagery and vectors 

 Methods for performing analyses with those data 

 Parallelized and run in the Google cloud 

Earth Engine JavaScript API can be used for programmatically access and analyze vast 

amounts of geospatial data. We want to stress that the Earth Engine API and advanced Earth 

Engine functionality at http://earthengine.google.org/ are experimental and subject to 

frequent change and are restricted to Earth Engine Trusted Testers. For this, Earth Engine 

Beta tester access was acquired (Google Earth Engine. API tutorial, 2014). 

3.4 Research Limitations 

Although Landsat images seem potentially useful for this research, we encountered several 

limitations that made it rather difficult to carry on.  

1. Availability of Landsat images  

As the main objective is the analysis of temporal and spatial variations of forest, dense 

Landsat data are required. Unfortunately, there is a time gap from 1988 to 1998.  

 

2. The quality of images 

In order to have continuous time series Landsat 7 SLC-off images are also included to 

collection (years after 2003). On May 31, 2003, the Scan Line Corrector (SLC), which 

compensates for the forward motion of Landsat 7, failed. This makes data affected by 
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missing scan lines, particularly the SLC-off effects are most pronounced along the edge of 

the scene (Landsat missions, USGS, 2014). 

Another concern is cloud contamination of images, as Landsat images are highly affected by 

atmospheric conditions. The study area is regularly cloudy and there are years, when there 

are only 1 or 2 available cloud free images for the whole year. As a result several images 

cannot be used for research because of extensive cloud cover, which makes the real number 

of potentially useful imagery very small. To overcome these obstacles, Landsat compositing 

methods, cloud masking operations are used. 

 

3. Availability and access to forest monitoring data 

 

Although there are some publications about the forest and the disturbances the critical 

problem in this research field is the lack of continuous data. Furthermore, the data are poorly 

published and frequently hard to get from public authorities.    
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Elimination of missing scan line effect 

 

The following step is the reduction of missing scan line effect. For this purpose simple 

function was mapped on collection which masked out the anomalous data along the edges of 

Landsat scene.  

 

Compositing 

 

It was discussed in previous chapters that one of the significant limitations of study is the 

availability and quality of Landsat imagery.  The creation of composites is rather challenging 

for the study area due to the limited number of available scenes. 

A number of rules were applied in order to generate cloud‐free, radiometrically and 

phenologically consistent image composites that are spatially contiguous over large areas. 

This shift from a scene‐based perspective to a pixel‐based perspective for image 

understanding and processing is key, and mirrors trends and developments in time series 

analysis approaches (White et al., 2014). 

In summarizing temporal trends, an important question arises with regards to the length of 

the time interval used for the summaries. The interpretability of simple shape parameters, 

such as slope and curvature, will depend on the length of time over which the trend is 

calculated (Lehmann et al., 2013). 

As the most of forest change studies focus on annual change detection, we first tried to create 

yearly composites. Because of reduced data, these composites were not suitable for further 

analysis. Figure 9 shows the composite of year 1985 where substantial part of data is 

missing. 

 

4.2 The Results of Data Preparation 

The examples of data inconsistency (Figure 9) and reduction due to preprocessing steps 

(Figure 8) shows that annual composites didn’t cover whole study area.  It was concluded, 

that the data are not sufficient for consistent annual compositing. Instead of that, two-year 

composites were created.  

The results of data preparation step are 10 cloud free surface reflectance composites that use 

the available pixel observation for given location. The composites are produced using a set of 

specified rules that are defined according to the information need: they capture a specific 

time period during a limited phenological window of dry season. Bi-annual time series of 
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CHAPTER FIVE 

DETECTION OF FOREST DISTURBANCE AND TREND 
ANALYSIS 

 
5.1 Image Processing  

The resulting composites for the periods 1984-1987 and 1999–2014 were used in a linear 

trend analysis to characterize spatio-temporal patterns of forest cover changes. For that 2 

vegetation indices were used and added to composites. To process the trend analysis, time 

band was also added, which append the time properties of composites. 

It is described in previous chapters, that two types of forest disturbances are taking place in 

study area: clear cuts and selective logging. For this research, two simple, yet efficient 

vegetation indices are used Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Moisture Index (NDMI). Clear cuts can be detected with acceptable 

accuracy using either NDMI or NDVI.  However, partial harvests usually are detected with 

lower accuracy (especially using NDVI). To assess the partial harvests with higher accuracy, 

NDMI was used. In the following section both indices will be described.  

The NDVI technique for monitoring vegetation greenness and biomass is a well-known and 

commonly used method in forest change detection (Wilson & Sader, 2002). 

NDVI is defined as:  

(Band 4−Band 3) / (Band 4+Band 3),  

Band 4 is the reflectance of Landsat TM or ETM+ near-infrared band 4, and band 3 is 

reflectance of Landsat TM or ETM+ red band 3. NDVI separates green vegetation from other 

surfaces because the chlorophyll of green vegetation absorbs red light for photosynthesis and 

reflects the near-infrared wavelengths due to scattering caused by internal leaf structure. Thus, 

high NDVI values indicate high leaf biomass, canopy closure, or leaf area. The ease of 

calculating NDVI from various types of satellite data, the success of the NDVI in detecting 

vegetation, and its ease in calculation and interpretation has made it a popular spectral 

vegetation index, as well as a widely used data product for studying vegetation (Wilson & 

Sader, 2002). 

 Index values can range from -1.0 to 1.0. Higher index values are associated with higher levels 

of healthy vegetation cover, and vice versa, non-vegetation cover (soil, rocks) produces 

negative values (Asiryan, 2005).  
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To improve the detection of selective logging the NDMI is used, which is derived from the 

Landsat TM or ETM+ near infrared band 4 and the short wave infrared band 5 and can be 

defined as: 

(Band 5−Band 4) / (Band 5+Band 4), 

Several studies report, that the SWIR bands, compared to others, explained more information 

about forest structure in conifer and hardwood forests.  Although few vegetation studies have 

applied the NDMI, it is reported that the NDMI was highly correlated with canopy water 

content and more closely tracked changes in plant biomass than did the NDVI. Compared 

NDMI and NDVI to detect forest changes at different Landsat acquisition intervals, in all 

classification trials, the NDMI change maps had a higher overall accuracy than the NDVI 

change maps. The higher accuracy of the NDMI change maps was due to an increased ability 

to detect lighter disturbances including partial cuts (Wilson & Sader, 2002; Jin & Sader, 

2005). 

 

5.2 Trend analysis 

To analyze the trends in forest area, simple linear regression model was used. Ordinary least 

squares regression was performed, where the linear model was fitted to values of each pixel. 

The independent variable in the model was the time and the dependent variable was the 

values of indices for each pixel. Afterwards the slope of the regression was spatially 

aggregated. 

Earth Engine currently supports one trend analysis method, formaTrend. FormaTrend can be 

used to compute either the long and short term trends of a time series or the trends of the ratio 

of the time series and a covariate. The long term trend is estimated from the linear term of a 

regression on the full time series. FormaTrend acts on an image collection, or time series, to 

extract trends.  

Given two time series, the predictors and the responses, formaTrend: 

1. Sorts both time series by time, 

2. Linearly interpolates predictor values to the time base of the responses, 

3. Replaces masked values with the nearest unmasked value, 

4. Replaces times with an observation number, 

5. Computes the OLS on the resulting vector (Google Earth Engine. API tutorial, 2014). 

The following figures (Figure 11 and 12) illustrate the visualization of long term trends of 

NDVI and NDMI. To visualize the trends color ramp from red to green was used, where with 
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5.2 Forest Masking and Within Forest Trend Analysis 

The resulted trend maps had some misleading areas with forest disturbances, where the area 

is not covered by forest. Therefore, to have better accuracy of detection of trends in forest 

change, forest layer was generated. Similar approach was used by Hansen et al., (2013) to 

calculate the loss within the forest cover. 

To achieve this aim, Hansen’s tree cover layer was used to automatically generate the forest 

layer. The treecover2000 band of the UMD/hansen/global_forest_change_2013 image 

provides information about the tree cover around the globe in the year 2000 and its available 

in GEE (Google Earth Engine.API tutorial 2014).  

In general the procedure of forest masking can be aggregated to following steps: 

1. Train a classifier and obtain classified image  

2. Extract a mask of forest cover 

3. Map a function over the original reflectance image collection 

Similar method was described by Huang et al., (2008), where training data were automatically 

generated using input satellite images and existing land cover products. The derived training 

data allow producing reliable forest cover products. The identified forest pixels then can be 

used as reference for delineating non-forest training samples.  

 Earth Engine supports the supervised classification of raster imagery. The process involves 

calling two methods: trainClassifier to build a classification model and classifyImage to apply 

the model. The training samples were obtained by sampling and 10000 points were randomly 

generated. Classification and Regression Tree (CART) was chosen as a classification method. 

The use of binary decision trees for classification is a nonparametric approach to pattern 

recognition. A decision tree provides a hierarchical representation of the feature space, in 

which patterns are allocated to classes according to the result obtained by following decisions 

made at a sequence of nodes at which branches of the tree diverge. CART letters indicate that 

trees may be used not only to classify entities into a discrete number of groups, but also as an 

alternative approach to regression analysis in which the value of a response (dependent) 

variable is to be estimated, given the value of each variable in a set of explanatory 

(independent) variables (Bittencourt & Clarke,  2003). 
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CHAPTER SIX 

RESULTS AND DISSCUSSION 
 

Trends in the forest area were derived using an ordinary least squares slope of the regression 

of vegetation index value versus time. Forest disturbances were not allocated annually, but 

over the entire study period derived from the negative slopes of regression analysis during 

leaf on season.  

 As a result it was found that in the period 1984-2014, the loss of forest reached about 7% 

(156 km2) estimated by NDVI, and 22.9% (516 km2) estimated by NDMI. 

For checking the truthfulness of the results several validation techniques were used. It is 

described in the previous section that the trends were not significant in the areas of forest 

disturbance. This can be caused by the limited number of observations available during a long 

term and their sparse distribution over the time. Another reason can be the year-to-year 

variations in weather conditions on plant activity or ecosystem disturbances (Forkel et al., 

2013). 

To validate the forest disturbances, 21 polygons were used, which depict the partial harvests 

in the study area. In addition, the annual report of the State forest monitoring center of 

Armenia and the historical data of forest cover dynamics (Hengeryan et al., 2006; State forest 

monitoring center of Armenia, 2014) were made use of. 

The resulted forest disturbance layers were clipped with ground truth polygons, and the 

number of polygons where there are forest loss pixels (presence/absence) was calculated. 

Then simple ratio was made, which shows that NDVI had a 70% accuracy, while NDMI 95% 

accuracy.  These results are in appliance with other studies (Wilson & Sader, 2002) and this 

outcome reports that the replacement of red band with SWIR significantly increases the 

accuracy of forest harvest detection. This can be due to the ability of SWIR to absorb water 

which leads to improvement of characterization of change especially in the early stages of 

forest harvests.  

The spatial distributions of forest cover change during the time period shows specific 

locations of disturbances. They are mainly spotted near the cities and roads.  

It is known, that aspects can have a strong influence on vegetation as the south facing slopes 

are generally drier than the north facing slopes. For this purpose terrain was studied and 

aspect values were calculated. As the forest disturbances were depicted in both north facing 

and south facing slopes, we concluded that the results are not affected by terrain. 
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Temporal variability of VI change was also studied. At the locations, where negative slopes 

were depicted, the VI values were plotted against time. Figure 20 illustrates the results, from 

which we can notice that there is a pattern in decline in 1999. This is logical, as the forests 

were under the highest anthropogenic pressure during the 1990s. 191 km2 forest loss was 

depicted during the 1987-2000 (Sayadyan 2007, Thuresson et al., 1999, based on national 

inventory data). Another estimate of forest loss 1993-2000 is around 540km2 (Hengeryan et 

al., 2007). The estimates are different, but they clearly show that there was a dramatic loss of 

forest during the 1990s and the decline in 1999 is justified.  

Furthermore, in most of the locations, there was a decline in 2003-2004 which can be justified 

by the large amount of wind-blown trees during those years. In addition, the official forest 

logging data published by Hayantar (2014) also depict these years with the high amount of 

cuts. 

Also the annual report of the State forest monitoring center of Armenia was studied, and the 

depicted decline from 2010 coincides with the peak of illegal logging starting from 2009. 

They justify the increasing pressure on the forest by the rise of the price of electricity and gas 

in recent years.  

Overall, from the analysis of the trajectories, the values of coefficients we can see that there is 

no major increasing or decreasing trend and the values of vegetation indices fluctuate over 

time. This brings an assumption that after the decrease there was reforestation and trees grow 

back after the disturbance. To back this assumption, differences of the composites from the 

start and the end of time period were calculated. The smaller values of these differences than 

those of the depicted disturbance values endorse the discussed assumption. 

Although we can see that GEE provides functionalities for advanced analysis, there were 

some limitations that we encountered. Because of the limitation of the used reducer (limited 

number of pixels), we were not able to run calculations with the original resolution. Another 

concern was the significance of the estimated trends. This is of primary importance since it 

demonstrates the accuracy of our analysis.  

Despite the facts that the trends of the individual pixels are not significant, the trends can be 

more significant from spatially averaged coefficients. Because of the time restrictions, we 

were not able to develop the algorithms but it can be considered in further research. 

 

 

 
 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figuure 20: Trajectories of NDDMI value over a regions oof negative trrends 
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CONCLUSIONS AND RECOMMENDATIONS 
 

The results that we got from the study greatly influenced on our conclusions and helped to 

answer to all research questions. 

Research question 1 

Is it possible to detect patterns and trends of forest changes in local scale using 

temporally dense Landsat collections? How scientifically robust is the use of those data 

to identify the changes in the study area taking into account the limitations of study? 

 

From the results that were obtained it can be concluded that the available Landsat collections 

can provide sufficient information for identifying forest changes. It should be mentioned, that 

Landsat images are highly affected by clouds and missing scan lines due to the failure of scan 

line corrector in 2003. As a result careful preprocessing should be carried out. Although the 

data were not enough for analyzing the changes with annual composites, biannual composites 

were created.  

 

Research question 2 

What kind of techniques could be used to analyze forest cover change?  Are those 

methods relevant for research in local scale? 

 

Considering the limitations of data availability, 10 epochal composites were generated, which 

is practically an adequate number for trend analysis. The creation of continuous composites 

was possible due to the use of pixel based compositing method. 

Time series of vegetation indices were used. Two VI were chosen: NDVI and NDMI. 

Afterwards pixel based ordinary least squares regression was performed where dependent 

variable y was the value of VI. As a result the areas with negative slopes of regression were 

defined as forest disturbance. To eliminate overestimation in the non-forest areas, the forest 

cover layer was generated. The original composites were masked and as a result the changes 

in forest areas were obtained. Afterwards the results were compared with ground truth data. 

This proves that time series of VI enable detection and quantification of gradual changes 

within the time frame covered.  Both of the VIs used in the study were effective for detecting 

clear cuts. NDMI was more sensitive for partial harvests. 
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From the results we can conclude that the methods are relevant and provide favorable 

evidence of forest disturbances. GEE provides open access to satellite imagery and makes 

easier the use of above mentioned methods and extraction of interpretable results. 

 

Research question 3 

What is the trend of forest cover change in the study area? 

 

The results show that in 23% of forest area there were negative trends during the study period. 

The main areas of forest disturbances are close to populated areas and roads. 

The causes of the disturbances can be different. The main reasons are human-modification of 

the forest for industrial and (e.g. large clear cuts in Shnogh area) household (partial cuts 

around the cities) use. In addition, the forest was affected by natural disasters (wind, 

landslides).  

 

Future research needs more sophisticated algorithms for evaluating the significance of trends. 

Furthermore, the effects of weather related fluctuations of forest ecosystem must be taken into 

consideration in a great detail. 
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ATTACHMENTS 
 
GEE script 
 
The code is available also online and it can be accessed and executed with the 

following link: https://ee-api.appspot.com/3a8184d8249b671b855c52677a750da2 

 
 
// Analysis of spatial and temporal variations of forest 
// A case of study in northeastern Armenia 
// Gohar Ghazaryan 
// Master of Science in Geospatial Technologies 
 
 
//------------------------------------------Defining the extend of study area-----------------------------------// 
 
var aoi= ee.FeatureCollection(ee.Feature(ee.Geometry.Rectangle(44, 40.65, 45.6, 41.3))); 
var aoigeometry =ee.Geometry.Rectangle(44, 40.65, 45.6, 41.3); 
Map.setCenter(44.7, 40.8, 10); 
addToMap(ee.Image().paint(aoi,1,1),{},'Study_Area'); 
 
 
//------------------------------------------simpleCloudScore function------------------------------------------// 
var cloud_thresh = 20; 
var shadowSumBands = ['nir','swir1','swir2']; 
var cloud_filter = function(image) { 
  image = ee.Algorithms.Landsat.simpleCloudScore(image); 
  var quality = image.select('cloud').gt(cloud_thresh); 
  
  var maskedImage = image.mask().and(quality.not()); 
  image = image.mask(maskedImage); 
  return image; 
}; 
 
var maskIncomplete = function(image) 
  { 
    var incompleteThreshold = -0.001; 
    var imageWhere = image.where( 
      image.select([0]).gte(incompleteThreshold) 
    .and(image.select([1]).gte(incompleteThreshold)) 
    .and(image.select([2]).gte(incompleteThreshold)) 
    .and(image.select([3]).gte(incompleteThreshold)) 
    .and(image.select([4]).gte(incompleteThreshold)) 
    .and(image.select([5]).gte(incompleteThreshold)) 
    .and(image.select([6]).gte(incompleteThreshold)),10); 
     
    return image.mask(image.mask().and(imageWhere.select([1]).eq(10))); 
  }; 
 
var addIndices = function(in_image){ 
   
    in_image = in_image.select([0,1,2,3,4,5,6],STD_NAMES); 
    in_image = in_image.addBands(in_image.normalizedDifference(['nir', 
'red']).select([0],['ndvi']).toFloat()); 
    in_image = in_image.addBands(in_image.normalizedDifference(['nir', 
'swir1']).select([0],['ndmi']).toFloat()); 
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    return in_image; 
   
}; 
 
//------------------------------------------Adding a time band-------------------------------------------------// 
 
var set_date_time = function(in_image, year1,year2){ 
 
//Set some time properties  
  var time_start = new Date(year1,6,1); 
  var time_end = new Date(year2,9,1); 
  in_image = in_image.set({ 
      'system:time_start': time_start.valueOf(), 
      'system:time_end': time_end.valueOf(), 
      'system:year_start': year1, 
      'system:year_end':year2 
  }); 
  return in_image; 
  }; 
 
var MSEC_PER_TIMESTEP = 60*365*2*60*24*1000; 
var addDateBand = function(inImg){ 
  var i =inImg.metadata('system:time_start').divide(MSEC_PER_TIMESTEP).toFloat(); 
  return inImg.addBands(ee.Image(i).select([0], ['Date'])); 
   
}; 
 
//------------------------------------------Getting the data for forest layer prediction------------------------// 
 
// Specifying temporal window  
var start_day = 182;// July 1 
var end_day = 274;// October 1 
var shadowSumThresh = 0.3; 
 
//  A mapping from a common name to the sensor-specific bands 
var STD_NAMES = ['blue', 'green', 'red', 'nir', 'swir1', 'temp','swir2']; 
var vizParamsCO = {'min': 0.05,'max': [.3,0.4,.4],   'bands':'swir1,nir,red'}; 
var vizParamsHansenTC = {'min':20, 'max':100, 'palette': '000000, 00FF00'}; 
 
var getImage = function(years){ 
  var year1 = years[0]; 
  var year2 = years[1]; 
  var iEnd =year1.toString() + '_'+year2.toString(); 
  var img = ee.ImageCollection('L5_L1T_TOA') 
            .filterDate(new Date('1/1/'+year1.toString()),new 
Date('12/31/'+year2.toString())) 
            .filter(ee.Filter.calendarRange(start_day,end_day)) 
            .filterBounds(aoigeometry) 
            .map(function(img){ 
              var  filtered = cloud_filter(img).select([0,1,2,3,4,5,6],STD_NAMES); 
               filtered = maskIncomplete( filtered); 
              var sum =  filtered.select(shadowSumBands).reduce(ee.Reducer.sum()); 
              filtered =  filtered.mask( filtered.mask().and(sum.gt(0.3))); 
              return  filtered}); 
  img =img.reduce(ee.Reducer.percentile([50])).select([0,1,2,3,4,5,6],STD_NAMES); 
  img = addIndices(img); 
  img = set_date_time(img,year1,year2); 
  //addToMap(img.clip(aoigeometry),vizParamsCO,'img_'+iEnd,false); 
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  return img; 
}; 
 
var sampleNumber = 10000; 
var modelYears = [2000,2012]; 
var applyYearList = [[1984,1990]]; 
var mode ='regression'; 
 
// A region of the image to train with 
var trainingPolygon = ee.FeatureCollection(ee.Feature(ee.Geometry.Rectangle(44.3, 40.6, 
45.5, 41.2))); 
var points = ee.FeatureCollection.randomPoints(trainingPolygon, sampleNumber, 1, 1); 
 
//Adding data 
var hansenFC = 
ee.Image('UMD/hansen/global_forest_change_2013').select('treecover2000'); 
var cover = hansenFC; 
var vizParamsCover = vizParamsHansenTC; 
//addToMap(cover, vizParamsCover, 'Calibration Raster'); 
 
var terrain = ee.Algorithms.Terrain('CGIAR/SRTM90_V4'); 
var modelData = cover.addBands(getImage(modelYears).addBands(terrain)); 
var applyData = getImage([1984,1985]).addBands(terrain); 
var applyImages  = applyYearList.map(function(yr){return 
getImage(yr,start_day,end_day,shadowSumThresh).addBands(terrain)}); 
 
//Get the band names 
var bandNames =modelData.bandNames(); 
var trainingName = bandNames; 
var predictorNames = bandNames.slice(1,bandNames.length-1); 
 
// Training the classifier with specified inputs 
var trainModel = function(points,modelData,trainingName,predictorNames, 
classificationMode){ 
   
  var training = modelData.reduceToVectors({ 
    reducer: "mean", 
    geometry: points, 
    geometryType: "centroid", 
    scale: 30,  
    tileScale: 7, 
    crs: "EPSG:4326"}) 
    .filter(ee.Filter().neq('blue', null)) 
    .filter(ee.Filter().neq('elevation', null)) 
    .filter(ee.Filter().neq('slope', null)); 
  //addToMap(training,{},'training',false); 
   
  var classifier = training.trainClassifier({ 
    property_list: predictorNames, 
    class_property: 'label', 
    classifier_mode: classificationMode, 
    classifier_name: "Cart"}); 
  return classifier; 
}; 
 
var applyModel = function(model,applyData,predictorNames){ 
  // Apply the classifier to the original composite. 
  var output = applyData.select(predictorNames).classify(model); 
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  //addToMap(output.clip(aoigeometry), vizParamsCover,'forest'); 
  return output; 
}; 
 
var model = trainModel(points,modelData,trainingName,predictorNames,mode); 
var forest_cover = applyImages.map(function(applyData){return 
applyModel(model,applyData,predictorNames)}); 
 
//--------------------------------Trend analysis ----------------------------------------------------------------// 
// Years for creating the composites  
 
 var years = 
[[1984,1985],[1986,1987],[1999,2000],[2001,2002],[2003,2004],[2005,2006],[2007
,2008],[2009,2010],[2011,2012],[2013,2014]]; 
 
 
var getImage = function(years,start_day,end_day,shadowSumThresh){ 
  var year1 = years[0]; 
  var year2 = years[1]; 
  var iEnd =year1.toString() + '_'+year2.toString(); 
   
  var img = ee.ImageCollection('LANDSAT/LT5_L1T_TOA') 
            .filterDate(new Date('7/1/'+year1.toString()),new Date('10/1/'+year2.toString())) 
            .filter(ee.Filter.calendarRange(start_day,end_day)) 
            .filterBounds(aoi) 
            .map(function(img){ 
              var filtered = cloud_filter(img).select([0,1,2,3,4,5,6],STD_NAMES); 
              filtered = maskIncomplete(filtered); 
              var sum = filtered.select(shadowSumBands).reduce(ee.Reducer.sum()); 
              filtered = filtered.mask(filtered.mask().and(sum.gt(shadowSumThresh))); 
              return filtered; 
            }); 
  var img2 = ee.ImageCollection('LANDSAT/LE7_L1T_TOA') 
            .filterDate(new Date('7/1/'+year1.toString()),new Date('10/1/'+year2.toString())) 
            .filter(ee.Filter.calendarRange(start_day,end_day)) 
            .filterBounds(aoi) 
            .map(function(img){ 
              var filtered = cloud_filter(img).select([0,1,2,3,4,5,7],STD_NAMES); 
              filtered = maskIncomplete(filtered); 
              var sum = filtered.select(shadowSumBands).reduce(ee.Reducer.sum()); 
              filtered = filtered.mask(filtered.mask().and(sum.gt(shadowSumThresh))); 
              return filtered; 
            }); 
  img = ee.ImageCollection(img.merge(img2)); 
  img =img.reduce(ee.Reducer.percentile([50])).select([0,1,2,3,4,5,6],STD_NAMES); 
  img = img.clip(aoi); 
  img = img.mask(forest_cover[0].gt(75)); 
  img = addIndices(img); 
  img = set_date_time(img,year1,year2); 
//addToMap(img.clip(aoigeometry),vizParamsCO,'img_'+iEnd,false); 
  return img; 
}; 
 var images = ee.ImageCollection(years.map(function(yr){return 
getImage(yr,start_day,end_day,shadowSumThresh)})); 
var images = images.map(addDateBand); 
print(images); 
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// Adding the polygon of Armenia 
var countries = ee.FeatureCollection('ft:1tdSwUL7MVpOauSgRzqVTOwdfy17KDbw-
1d9omPw'); 
var Armenia = countries.filterMetadata('Country', 'equals', 'Armenia'); 
 
// Extracting the series of  VI 
 
var ndvis = images.select(['ndvi']); 
var ndmis = images.select(['ndmi']); 
 
// Individual differences of composites from the start and the end of time period 
var ndvi1984 = ndvis.filterDate( 
   '1984-01-01', '1999-12-31').median(); 
 
var ndvi2014 = ndvis.filterDate( 
   '2009-01-01', '2014-12-31').median(); 
   var difference = ndvi2014.subtract(ndvi1984); 
//addToMap(difference.clip(aoigeometry),  
 // {'palette':'FF0000, 000000, 00FF00', 
//    'min': -0.15, 'max': 0.15 
//  }); 
 var differenceLoss= difference.mask(difference.lt(0)).clip(aoigeometry).clip(Armenia); 
 //addToMap(differenceLoss.clip(aoigeometry),  
//  {'palette':'FF0000', 
//    'min': -0.15, 'max': 0 
//  }); 
  
 var num_differenceLoss=differenceLoss.reduceRegion(ee.Reducer.count(), aoi,250); 
print(num_differenceLoss,'NDVI difference'); 
 
var ndmi1984 = ndmis.filterDate( 
   '1984-01-01', '1999-12-31').median(); 
 
var ndmi2014 = ndmis.filterDate( 
   '2009-01-01', '2014-12-31').median(); 
    
var differenceNDMI = ndmi2014.subtract(ndmi1984); 
//addToMap(differenceNDMI.clip(aoigeometry),  
 // {'palette':'FF0000, 000000, 00FF00', 
 //   'min': -0.15, 'max': 0.15 
 // }); 
var differenceLossNDMI= 
differenceNDMI.mask(differenceNDMI.lt(0)).clip(aoigeometry).clip(Armenia); 
// addToMap(differenceLossNDMI.clip(aoigeometry),  
 // {'palette':'FF0000', 
 //   'min': -0.15, 'max': 0 
 // }); 
  
 var num_differenceLossNDMI=differenceLossNDMI.reduceRegion(ee.Reducer.count(), aoi,250); 
print(num_differenceLossNDMI,'NDMI difference'); 
 
 
//------------------------------------------Forma trend ndvi-------------------------------------------------// 
var trends = ndvis.formaTrend(); 
var ltTrend = trends.select(['long-trend']).clip(Armenia).clip(aoigeometry); 
//addToMap(ltTrend.mask(ltTrend.lt(0.1).clip(aoigeometry)), { min: -0.01, max: 0.01,'palette': 
'FF0000,FFFF00,00FF00'}, 'FormaTrend-Long term trend'); 
//------------------------------------------Forma trend ndmi-------------------------------------------------// 
var trends_ndmi = ndmis.formaTrend(); 
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var ltTrend_ndmi = trends_ndmi.select(['long-trend']).clip(Armenia); 
 
//addToMap(ltTrend_ndmi.mask(ltTrend.lt(0.1).clip(aoigeometry)), { min: -0.01, max: 0.01,'palette': 
'FF0000,FFFF00,00FF00'}, 'FormaTrend_ndmi'); 
  
 
//------------------------------------------Linear fit reducer for ndvi-------------------------------------------// 
var linearFit_ndvi = 
images.select(['Date','ndvi']).reduce(ee.Reducer.linearFit()).clip(Armenia); 
var linearFit_ndvi = linearFit_ndvi.select(['scale']); 
//addToMap(linearFit_ndvi.clip(aoigeometry),{ min: -0.01, max: 0.01,'palette': 
'FF0000,FFFF00,00FF00'}, 'linearFitReducer_ndvi'); 
var loss_ndvi= linearFit_ndvi.mask(linearFit_ndvi.lt(0)); // masking the values  
//addToMap(loss_ndvi.clip(aoigeometry).clip(Armenia), { min: -0.01, max: 0,'palette': 
'FF0000,FFFF00'}, 'loss_linearfit_ndvi'); 
 
var num_loss_ndvi=loss_ndvi.reduceRegion(ee.Reducer.count(), aoi, 250); 
print(num_loss_ndvi, 'NDVI loss'); 
 
 
//------------------------------------------Linear fit reducer for ndmi------------------------------------------// 
 
var linearFit_ndmi = 
images.select(['Date','ndmi']).reduce(ee.Reducer.linearFit()).clip(Armenia); 
var linearFit_ndmi = linearFit_ndmi.select(['scale']); 
addToMap(linearFit_ndmi.clip(aoigeometry),{ min: -0.01, max: 0.01,'palette': 
'FF0000,FFFF00,00FF00'}, 'linearFitReducer_ndmi'); 
var loss_ndmi= linearFit_ndmi.mask(linearFit_ndmi.lt(0)); // masking the values  
addToMap(loss_ndmi.clip(aoigeometry).clip(Armenia), { min: -0.01, max: 0,'palette': 
'FF0000,FFFF00'}, 'loss_linearfit_ndmi'); 
var num_loss_ndmi=loss_ndmi.reduceRegion(ee.Reducer.count(), aoi, 250); 
print(num_loss_ndmi,'NDMI loss'); 
 
//-----------------------------------------Temporal  analysis-------------------------------------------------// 
// Temporal trajectories of VI 
// For other sites change the polygon to 
// (44.82, 41.05, 44.87, 41.1) Shnogh 
// (44.48, 40.785, 44.5, 40.8) Vanadzor 
// (44.84, 40.7, 44.86, 40.73) Dilijan 
 
var subsetShnogh =ee.Geometry.Rectangle(44.82, 41.05, 44.87, 41.1); 
addToMap(subsetShnogh,'Shnogh'); 
 
//Chart series 
var TimeSeries = 
    Chart.image.series(ndmis,subsetShnogh, ee.Reducer.mean(),200); 
     TimeSeries = TimeSeries.setOptions({ 
  title: 'NDMI over time in regions of Shnogh', 
  vAxis: { 
    title: 'NDMI' 
    }, 
  lineWidth: 1, 
  pointSize: 4, 
}); 
print(TimeSeries); 
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