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Concurrent and Accurate Short Read Mapping
on Multicore Processors
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Joaquín Dopazo, Enrique S. Quintana-Ortí

Abstract—We introduce a parallel aligner with a work-flow organization for fast and accurate mapping of RNA sequences on
servers equipped with multicore processors. Our software, HPG Aligner SA1, exploits a suffix array to rapidly map a large fraction
of the RNA fragments (reads), as well as leverages the accuracy of the Smith-Waterman algorithm to deal with conflictive reads.
The aligner is enhanced with a careful strategy to detect splice junctions based on an adaptive division of RNA reads into small
segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing crucial information for
the successful alignment of the complete reads.
The experimental results on a platform with Intel multicore technology report the parallel performance of HPG Aligner SA, on RNA
reads of 100–400 nucleotides, which excels in execution time/sensitivity to state-of-the-art aligners such as TopHat 2+Bowtie 2,
MapSplice, and STAR.

Index Terms—RNA, Short-read alignment, suffix array search, Smith-Waterman’s algorithm, high performance computing,
multicore processors.
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1 INTRODUCTION

Over the last few years, biology has experienced a
revolution as a result of the introduction of new DNA
sequencing technology, known as Next-Generation
Sequencing (NGS), that nowadays makes it possible
to sequence the genomic DNA or RNA transcripts, or
transcriptome, in a matter of days instead of years,
at a very low cost. These recent high-throughput
sequencers produce data at unprecedented rates and
scale, with associated sequencing costs in continuous
decrease. In particular, RNA sequencing (RNA-seq)
technology [1] has arisen as a crucial analysis tool
for biological and clinical research, as it can help
determine and quantify the expression of genes, the
RNA transcripts, that are activated or repressed due to
different diseases or phenotypes, therefore providing
an unbiased profile of a transcriptome that helps
understand the etiology of a disease. In consequence,
RNA-seq is increasingly replacing conventional ex-
pression microarrays in most practical scenarios [1].

• H. Martínez, S. Barrachina, M. Castillo, and E. S. Quintana-Ortí
are with the Computer Science and Engineering Department, Jaume I
University, 12006–Castellón, Spain.
E-mails: {martineh,barrachi,castillo,quintana}@uji.es.

• J. Tárraga, and J. Dopazo are with the Computational Genomics
Institute, Prince Felipe Research Center, 46012–Valencia, Spain.
E-mails: {jtarraga,jdopazo}@cipf.es.

• I. Medina is with the European Bioinformatics Institute, CB10 1SD–
Cambridge, United Kingdom.
E-mail: imedina@ebi.ac.uk.

1. HPG Aligner SA is an open-source application. The software is
available at http://www.opencb.org/.

Current NGS technology can sequence short DNA
or RNA fragments, usually of length between 50
and 400 nucleotides (nts), though new sequencers
with longer fragment sizes are being developed. Pri-
mary data produced by NGS sequencers consists of
hundreds of millions or even billions of short DNA
or RNA fragments which are called reads. The first
step in NGS data processing in many comparative
genomic experiments, including RNA-seq or genome
resequencing [2], involves mapping the reads onto
a reference genome, in order to locate the genomic
coordinates these fragments come from. This step
constitutes a highly expensive process from the com-
putational point of view.

Genes code the sequence of proteins with a four
letters alphabet. However, in higher eukaryotes, this
message is not coded in a unique continuous stretch,
but is divided into small stretches (average length
140 nts) called exons, interrupted by longer (average
length 3,400 nts) non-coding stretches called introns.
(On average, there are 8.8 exons and 7.8 introns per
gene.) The transcription machinery transcribes both
stretches in a unique nascent pre-messenger RNA
(pre-mRNA) transcript. This transcript undergoes a
process, known as splicing, in which introns are re-
moved and exons are joined. Splicing is needed for the
eukaryotic messenger RNA (mRNA) before it can be
used to produce a correct protein through translation.
RNA-seq experiments aim to sequence the mRNA.
These fragments correspond to already concatenated
introns, which should be mapped over the complex
intron/exon structure of the genes.

The mapping process is more challenging for RNA-
seq than for DNA-seq due to a variety of aspects.
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First, as stated above, the genes in eukariotes are
split into exons, which can be separated by intron
zones comprising up to thousands of nucleotides. In
consequence, when mapping the reads from RNA
transcripts onto a reference genome, one faces the
difficulty that these reads may contain a splice junc-
tion and, therefore, involve different exons, which in
practice may lie thousands of nucleotides apart. This
situation is referred to as a spliced alignment. This
is even more complex for longer reads, because they
have a higher probability of spanning two or more
exons, complicating the alignment process. In addi-
tion, the existence of pseudogenes may cause wrong
alignments of those exon-spanning reads, especially
for the human genome. Sensitivity is also a serious
concern at this point [3], given that natural variations
or sequencing error may occur, yielding frequent mis-
matches between the reads and the reference genome,
which increase the computational complexity of the
procedure.

The Burrows-Wheeler transform (BWT) [4] is a
popular technique that has been successfully ap-
plied to speed up ungapped alignment in genome
index-based searches. A strategy that combines index-
based read mapping with splice junction detection
is implemented in TopHat [5], a software for the
analysis of RNA-seq experiments. TopHat internally
leverages Bowtie [2], a program for read mapping
but with no support for gapped alignment. To tackle
this, TopHat combines read mappings that lie in
close genomic locations to reconstruct putative exon
junctions, where unmapped reads are tried again. In
the last years, a number of alternative aligners have
been introduced that outperform TopHat+Bowtie in
many scenarios; e.g., TopHat 2+Bowtie 2 [6], [7],
GSNAP [8], MapSplice [9], SpliceMap [10], RUM [11],
ContextMap [12], CUSHAW2 [13], and STAR [14].

In [15] we presented a concurrent algorithm for
mapping short RNA sequences on multicore pro-
cessors. This prototype mapper processed the data,
initially stored on disk, in batches of reads which were
passed between the consecutive stages of a pipeline.
BWT was used initially to identify all the reads that
could be mapped either correctly or with one error.
Then, BWT was re-applied to map small fragments
(referred to as seeds) of unaligned reads in order to
locate their possible mappings. The experimental re-
sults showed high sensitivity (on average, around 97%
for our mapper vs 61.1% in the best case for TopHat 2)
and performance (with our mapper being more than
one order of magnitude faster than TopHat 2). We
believe that the poor sensitivity reported for TopHat 2
was partially due to the use of datasets automatically
generated with the dwgsim application from the SAM
tools [16].

In [17] we introduced an improved version of the
BWT-based aligner. Compared with the original al-
gorithm, the new aligner presented two key differ-

ences: i) the use of a “meta-exon” data structure to
record information about successful mappings; and
ii) a re-design of the mapping procedure, including
an organization of the process into three work-flows
in order to exploit the meta-exon information. These
factors rendered increases in speed and sensitivity
with respect to the aligner in [15] that were close
to 2× and 2%, respectively. Indeed, the sensitivity
improvement was higher, as the new sensitivity tests
also considered whether the reads correctly expanded
over all the covered splice junctions.

The results in [17] showed that our BWT-based
aligner was superior to a variety of mappers either in
sensitivity, speed or both. However, we also noticed
in our experiments that, for large datasets, STAR at-
tained higher computational performance and parallel
scalability than the rest of the mappers, including
ours.

In this paper we present a refurnished work-flow-
based aligner, which combines an efficient strategy for
junction detection and a mapping technique with high
sensitivity that correctly aligns reads with a high rate
of mismatches (errors), insertions or deletions (indels).
In particular, the new aligner features the following
major changes with respect to [17]:

• The integration of a Suffix Array (SA) [18] search,
instead of BWT, which significantly improves the
speed of the initial stages of the aligner.

• A complete re-organization of the work-flow
structure, including a new approach to control
inter-stage interactions with reduced synchro-
nization overhead and improved data locality.

• A re-design of the parallelization scheme that
renders very high scalability.

• A new adaptive (dynamic) “seeding” strategy to
process conflictive reads.

As a result of these enhancements, the new mapper,
HPG Aligner SA, shows high sensitivity and great
parallel performance for RNA-seq reads of length 100,
150, 250 and 400 nts even with large datasets (e.g., 80
million reads), outperforming state-of-the-art alterna-
tive aligners like TopHat 2+Bowtie 2, MapSplice and
STAR, both in sensitivity and speed.

The rest of the paper is structured as follows. In sec-
tion 2 we describe the mapping algorithm underlying
HPG Aligner SA and describe its pipeline organization
into two work-flows. In section 3 we review the par-
allelization of the pipeline using PThreads, a standard
for shared-memory parallel programming. A detailed
experimentation is reported next, in section 4, where
we explore the computational performance (speed)
and sensitivity of the full work-flow sequence on a
server equipped with multicore technology from Intel;
moreover, in that section we include a comparison
of HPG Aligner SA against TopHat 2+Bowtie 2, Map-
Splice, and STAR on that platform. We finally close
the paper with a discussion of conclusions and future
work in section 5.
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2 THE MAPPING ALGORITHM

In HPG Aligner SA, reads are aligned using a combina-
tion of mapping with SA [14] and local alignment with
the Smith-Waterman algorithm (SWA) [19]. As SA is
faster than SWA but does not allow indels, we employ
the former in the early stages of the process, to obtain
a rapid mapping of a large number of reads (those
which contain no indels). On the other hand, SWA is
applied in the final stages, to reliably map conflictive
reads. Furthermore, in our approach splice junctions
are detected by dividing unmapped reads into mul-
tiple seeds [6], [7], [9], of variable length [14], which
are then mapped using SA at distances compatible
with the length of an intron. The potential mapping
regions detected using these seeds are next identified
and brought together to perform the SWA alignment.

The new HPG Aligner SA mapping algorithm is or-
ganized as two consecutive work-flows (see Figure 1)
and relies on a meta-exon structure that is updated
with information about those reads that are mapped
with high confidence during the process. Inside the
second work-flow, this structure is used to speed
up the mapping of unprocessed reads as well as to
correctly align those reads that could not be mapped
by the first work-flow.

FASTQ Work-flow 
1

BAM

Work-flow 
2

HARD
CLIPPING

Fig. 1: Work-flow organization of HPG Aligner SA.

The detailed pipelines of the two work-flows are
shown in Figure 2. The first work-flow maps the reads
to the reference genome, and sets apart those reads for
which a reliable mapping could not be found. These
unmapped cases are marked as “hard clipping reads”,
and stored into a file that will be later processed by
Work-flow 2; see Figure 2a.

The second work-flow processes the hard clipping
reads using the meta-exon structure as a back-up; see
Figure 2b. Specifically, the information on those parts
of a read that were mapped to positions present in the
meta-exon structure is leveraged to test the mappings.

2.1 Work-flow 1
The mapping process of this work-flow is divided into
five stages, A–E, as illustrated in Figure 2a. The inter-
actions between the read stage (A) and stages B–D,
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(a) Work-flow 1
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(b) Work-flow 2

Fig. 2: Detail of the pipelines corresponding to the two
work-flows embedded in HPG Aligner SA.

and between these stages (B–D) and the write stage
(E) follow a producer-consumer relationship, and is
synchronized through two shared data structures (the
Read and Write queues), where the producer inserts
work for the consumer to process. This organization
allows the input/output to be overlapped with the
computational stages. Our previous versions of HPG
Aligner [15], [17] also regulated the interactions be-
tween stages B, C and D following this producer-
consumer strategy, in an attempt to improve con-
currency. However, we have found that, to improve
data locality and reduce synchronization overheads,
it is more efficient that these three stages are logically
“amalgamated” from the point of view of their pro-
cessing.

In the following paragraphs we discuss the tasks
performed at each one of the stages together with a
few relevant algorithmic details.
Stage A (Read Data). The data corresponding to the
RNA reads are initially stored in a disk file following
the standard FASTQ format [20]. Due to the large
number of reads per experiment (typically, dozens of
millions), this file is quite big, in general exceeding
the capacity of the main memory. (Although the file
sizes can vary a lot depending on the case study,
in our experiments we often had to deal with files
of 20 to 60 GBytes, which obviously do not fit in the
memory of most of todays’ desktop servers.)

Therefore, the principal task of this stage consists
in retrieving data from the disk in blocks, hereafter
referred to as batches of reads, of about 20 KBytes
per batch, which e.g. leads to approximately 60 reads
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if the reads contain 100 nts. Each batch of reads is
stored in the Read queue for latter consumption in
the subsequent stage, and it is placed in an array list
in main memory, which expedites fast serial and in-
dexed accesses. Among other information, each array
records the header, sequence, size, and quality of each
read.

Stage B (SA). This stage performs a fast mapping of
reads to the genome, using our own implementation
of the SA search.

The procedure extracts a batch from the read queue,
and then applies an SA-based algorithm, allowing no
indel per read.

If a read is successfully mapped, this stage creates
an alignment record for each mapping that identifies
the chromosome, the initial and final positions of
the read within the chromosome, and the strand.
Otherwise, it records those parts of the read that were
found to map into the reference genome, if any.

Whenever a complete match is found for a given
read, this stage updates the meta-exon structure with
this information.

Stage C (Region and CAL Seeker). This stage
processes those reads that were not mapped by the
previous stage. It divides each unmapped read into
several small fragments, or seeds, and searches for
candidate alignment regions (CALs) for these reads.

The previous versions of HPG Aligner [15], [17]
split each unmapped read into seeds of fixed length, of
18 nts each. For example, 9 seeds were obtained from
a read comprising 100 nts: 6 starting from the first
nucleotide of the read, an additional seed to include
the nucleotides remaining at the end of the read, and
2 more seeds to improve the coverage at the beginning
and the end of the read.

The new HPG Aligner SA follows an adaptive seed-
ing approach. The mapper first splits an 18-nt seed
from the beginning of the read, and this seed is
mapped using SA. If successful, the seed is extended
one nucleotide at a time for as long as there still exists
a match. The next 18–nt seed will thus begin right
after the nucleotide next to the last one for which
a map was found. If a seed cannot be mapped, the
next 18–nt seed is split from the 9th nucleotide from
the beginning of the unmapped seed. This procedure
is repeated until the whole read is processed (see
Figure 3). The choice of 18 as a splitting basis for the
seeds is due to this value matching the length for the
SA index that we are employing.

Read (100nts)

20nts

Mapped seeds

Unmapped seeds

18nts

8nts 24nts

18nts

8nts 18nts19nts

Fig. 3: A read split into multiple seeds.

The rationale of seeding the unmapped reads is
the following. The most likely reason a given read
was not mapped in stage B is that it contained at
least one indel. By dividing that read into shorter
seeds, we can expect that all the indels of the read
are concentrated in only a few places of the read.
Therefore, a majority of the seeds will be successfully
mapped onto the reference genome.

Note that the seeds are quite small, which leads to
a new problem, since now it is very probable that
a seed maps to a large number of locations in the
reference genome. The result of mapping these seeds
is therefore a large collection of regions, which identify
all the places in the reference genome where these
seeds were successfully mapped.

Nevertheless, we can expect than only those regions
that are related to a correct mapping of the read lie
close together. We consider these areas as potential
mappings of some part of the read, and we mark them
as candidate alignment locations (CALs).

Concretely, in order to obtain the CALs for a given
read, this stage first merges the regions of one read
that are less than a certain number of nucleotides
apart; and then classifies each merged region as a
CAL. Figure 4 shows two CALs, CAL0 and CAL1,
that have been identified from the regions obtained
by mapping the seeds of a given read. In this figure,
the gaps in the regions represent areas where some
of the seeds could not be properly matched to the
reference genome.

At the end of this process, the CALs are passed to
the next stage.
Stage D (SWA+Splice Junctions). For each un-
mapped read, this stage receives the CALs associated
with it. Those CALs that could lead to a splice junction
are grouped together as CAL groups. Then, for each
CAL and group of CALs a simple score is obtained
by counting how many nucleotides of the read they
covered. Only the CALs or group of CALs with the
best score are kept.

As the read could not be completely mapped in
previous steps, parts of the read will not match the
CAL or CAL group. We differentiate between inner
gaps in a CAL and the ends of the read not covered
by the CAL.

For each CAL or CAL group, the inner gaps of the
read will be filled first and then a mapping decision
will be made depending on whether there are ends
not covered by the CAL or CAL group or we can
confidently find a mapping for these ends.

The inner gaps are filled following the next pro-
cedure. If the inner gap length is comparable to the
corresponding unmapped part of the read, the SWA
is applied to obtain an alignment of the unmapped
part with the reference genome that corresponds to
that inner gap.

Otherwise, if the inner gap length is greater than
the corresponding unmapped part, we try to detect
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Fig. 4: Identification of CALs from regions.

a splice junction using a search which simply com-
pares the unmapped nucleotides of the read with
the reference genome until the intron marks (either
the canonical ones, “GT-AG” or “CT-AC”, or the
semi-canonical ones, “AT-AC”, “GT-AT”, “GC–AG”,
or “CT-GC”) are found (see Figure 5).

Once the inner gaps are mapped, if the read has no
unmapped ends, it is reported as mapped.

Otherwise, if the read has unmapped ends and the
CAL or CAL group cannot be found on the meta-
exon structure, the read and the computed partial
alignment are stored in the “Hard clipping” file, that
will be later processed by the second work-flow.

Finally, if the read has unmapped ends, but the CAL
or CAL group are found in the meta-exon structure,
the information about known exons is used to try
to map the unmapped ends with previous and next
exons, respectively. If the ends can be successfully
mapped, then the read is reported as mapped. Other-
wise, the read and the computed partial alignment are
stored in the hard-clipping file, to be later processed
by the second work-flow.

All the splice junctions and the number of times
each one has been detected are written to disk when
all the batches are processed by the two work-flows.
Therefore, this information must be maintained and
updated during the whole process (i.e., not only for
the current batch, but also for the current work-flow).
To reduce the memory space necessary to store the
information on detected splice junctions, as well as
to rapidly find whether the last splice junction had
already been detected, a self-balancing binary search
tree data structure (an AVL tree) is used to keep this
information.
Stage E: Write Results This stage completes the
processing of a read batch, writing to disk whether the
read was mapped or not using the SAM format [21].
The output file contains, among other information,
the read id (the first component of the header), the
sequence, its quality, the chromosome, and its initial
position. The reported score for each mapping is com-
puted following the Smith-Waterman score function:

score = (wm ·matches− wi ·mismatches

− wo · indelsopen − wc · indelsclose)
· 100/(wm · read_length),

where wm, wi, wo and wc are set to the default values
used in the Smith-Waterman algorithm (5, 4, 10, and
0.5, respectively), though these can be adjusted by the
user.

The above mapping process, performed by Work-
flow 1, is summarized in Figure 6.

BAM  BAM
(as no 

  mapped)

SA No

No

Yes

Yes

No

HARD 
CLIPPING

No

Yes

Yes

FASTQ

Entry point

Fig. 6: Algorithmic description of the Work-flow 1 in
HPG Aligner SA.

2.2 Work-flow 2
The second work-flow aligns the reads that could not
be completely mapped by the first work-flow. It uses
the meta-exon structure generated by the first work-
flow, and consists of three stages that adhere to the
producer-consumer paradigm; see Figure 2b.

Stage A (Read Data) of this work-flow simply reads
the unmapped reads and their partial mapping from
the “Hard clipping” file in blocks, and stores each
batch of unmapped reads in the Read queue for later
consumption by the subsequent stage.

Stage B (SWA and splice junction) proceeds as
follows for each read in a batch. First, the current
read is searched in the meta-exon structure. If the
read is found and it is fully covered by the meta-
exon structure, it is reported as mapped. Otherwise,
if the read is found but any of its ends are not
already covered by the meta-exon structure, the SWA
is applied from that end to the part of the reference
genome next to the mapped exon.

If the alignment score obtained by the SWA is
higher than a given threshold, the read is reported
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Read

Reference genome

Search
GT/CT

Search
AG/AC

...CATGGGAACTTTAGTCATCGTTT AAAGTTTTTTCCCATG...AGGT

TGGGAACTTTAGTCATCTTTTTTCCCA

Fig. 5: Splice junction detection.

as mapped. Otherwise, the read is split into seeds, as
described during the presentation of the first work-
flow, and these seeds are grouped into CALs using
a computationally less demanding procedure than
that used for the first work-flow. Concretely, this new
procedure commences by mapping only the first seed.
The mappings thus obtained are searched in the meta-
exon structure, which should be nearly complete at
this stage. If an entry that matches the whole read
is found in the meta-exon structure, we proceed to
the next step; otherwise, the same procedure used in
the first work-flow is performed. On the next step,
a similar algorithm as that previously described is
followed. The only difference lies in how the splice
junctions are detected. Specifically, instead of using
a simple search, the SWA is applied to align the
unmapped parts of the read and the parts of the
reference genome that extends the already mapped
parts till any intron marks. If the alignment score
obtained by the SWA is higher than the threshold
for this stage, then the read is reported as mapped.
Otherwise it is discarded.

Finally, when the last batch has been processed, all
the splice-junctions detected in any of the two work-
flows are written to an output file on disk using the
BED format [22].

The process implemented by Work-flow 2 is sum-
marized in Figure 7.

2.3 The meta-exon structure
The meta-exon data structure aims to reduce the soft-
clipping and to improve the alignment of reads cov-
ering splice junctions under some difficult situations,
such as when a read expands the junction in a very
unbalanced manner (i.e., when one of the two ends
of the read has a small part of less than 15–20 nts).
For example, a read with a CIGAR [23] “92M627N8M”
can be aligned in some RNA-seq aligners as “92M8S”.
The meta-exon stores the coordinates of the exons
and splice junctions helping HPG Aligner SA to tackle
these difficult alignments. In order to do so, the meta-
exon is updated at run time as follows: i) When a
read is completely mapped with high confidence to
one exon (i.e., no splice site covered), a new meta-
exon is created. As an exception, if the new meta-
exon overlaps with one previously found, instead of

Yes

BAM

Yes

Yes

No  BAM
(as no 

  mapped)

No

No

Entry point

HARD 
CLIPPING

Do SWA

NoYes

Fig. 7: Algorithmic description of the Work-flows 2 in
HPG Aligner SA.

creating a new meta-exon, the old one is extended
with the coordinates of the new one. ii) When a read
is mapped with high confidence to a splice junction
in a symmetric manner, two new meta-exons are
created and the splice junction is stored in the meta-
exon structure. As an exception again, in case there
exist previously identified meta-exons which overlap
with the new ones, they are simply extended and
no new meta-exon is created. This procedure aims to
confidently record any exons and splice junctions that
can be obtained from the processed reads.

At execution time, HPG Aligner SA exploits high
confidence mappings to learn where are the exons
and splice sites. When a read covers an exon in an
asymmetric manner, e.g. like in the earlier example
“92M8S”, HPG Aligner SA knows that there is a splice
site around “92M” with one or more other possible
exons. It then looks for the best match for those 8 nts,
finding that there is one exon at 627 nt where the
8 nt can be aligned with high confidence (done via
SWA). If a read with soft-clipping cannot be solved
or improved because the meta-exon is not complete
enough (as it is likely to happen with the first millions
of reads), it is temporarily saved to be evaluated again
after the whole file has been processed.
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The meta-exon structure is implemented as a dou-
ble linked list for each chromosome, where each
element stores the start and end position of a dis-
covered exon. To accelerate a direct access to some
inner elements of the double linked list, it uses an
additional array with shortcuts to the first and last
exons for a given range of positions. This meta-exon
implementation features a small memory footprint,
is very fast to query, and has shown to significantly
improve difficult alignments.

Although the meta-exon structure can be built from
scratch, a structure assembled from known exons
for the reference genome at hand can also be used
to accelerate the whole process. Users can initialize
the meta-exon structure by providing a transcriptome
file with well-known exons from the command line
Otherwise, this structure is initially empty and filled
during runtime with the processed reads.

3 LEVERAGING INTER AND INTRA STAGE
CONCURRENCY

The pipelined organization of the two work-flows
in HPG Aligner SA naturally accommodates a task-
parallel design that is well-suited for the hardware
concurrency of current multicore processors. Con-
cretely, both work-flows are divided into two types of
stages, I/O and computational, with the interaction
between them regulated via queues that act as data
buffers, synchronizing the relative processing speeds
(throughput) of the disk and the actual mapping
procedure. Moreover, as the second work-flow op-
erates with the meta-exon information produced by
the initial work-flow, the parallel execution of HPG
Aligner SA is further modulated by inserting a bar-
rier which blocks the second work-flow till all work
corresponding to the initial one has been completed.

The parallel aligner initially spawns a (user-
defined) number of PThreads among which, at any
given instant, only two can be performing I/O
from/to disk. Upon creation, one of the threads im-
mediately becomes an “I/O reader”, and it starts to
retrieve read batches (i.e., tasks) from the disk into
the read queue. The remaining threads start polling
this queue for tasks to process. When the number of
batches on the read queue exceeds a certain threshold,
the input from disk is momentarily detained, and the
reader thread turns into an additional “worker” that
processes read batches. When the number of pending
tasks in the read queue falls below a threshold, the
first idle worker becomes the I/O reader. Similarly,
when a new chunk of data is introduced into the write
queue, one of the threads momentarily becomes an
“I/O writer”, and copies that information to disk.

From the operational point of view, the mapper
in [15] separated the computational stages using syn-
chronization queues as well, in an attempt to balance
the distribution of the workload at the granularity of

“read batches”. Threads inspected the synchroniza-
tion queues between stages, e.g. in descending order
of complexity and/or queue length, for new tasks.
Upon encountering a non-empty queue, the thread
extracted a task from there, executed the correspond-
ing mapping operations, and inserted the result in the
output queue. A mutual exclusion mechanism was in
place to prevent race conditions when accessing the
shared queues.

We have significantly re-modeled and simplified the
operation of the pipeline in the new Work-flow 1,
with the purpose of improving its throughput while
maintaining the decoupling between the disk read
rate and the computational throughput. Concretely,
an idle thread now polls the read queue for work,
dequeues a new task upon encountering it, and per-
forms all processing corresponding to stages B, C,
and D on the batch. We have experimentally found
that, due to the large number of read batches (tasks)
that are to be processed, this design does not reduce
concurrency significantly. On the other hand, the re-
organized operation mode improves data locality as
well as reduces the synchronization overhead due to
the use of shared, mutex-controlled data structures for
inter-stage communication.

Figure 8 illustrates a fragment of the execution
trace of Work-flow 1 of HPG Aligner SA on a 12-
core Intel Xeon E5 platform. The trace illustrates that
the pipelined execution of the I/O and computational
stages of the mapper yields a perfect overlap, and how
the role of (I/O) reader/writer is taken by different
threads during the execution. The second work-flow
presents a similar behavior.

Although the parallelization of the framework
and stages using OpenMP (or PThreads) may seem
straight-forward, we remark that this is only possible
because of the careful organization of the complete
HPG Aligner SA pipelines, and the design of clean
procedural interfaces and specialized shared data
structures.

We have also exploited a certain degree of intra-
stage concurrency in our implementation of SWA.
Our routine consists of two phases: i) The alignment
score matrix is calculated; and ii) the optimal local
alignment is reconstructed by going backwards from
the element in the matrix with the maximum score.
The are two manners of parallelizing the computation
of the alignment score matrix: a) Intra-task [24], [25],
by parallelizing within a single pair of sequences;
and b) inter-task [26], [27], by processing multiple
pairs of sequences in parallel. Our implementation
exploits the first option using the Streaming SIMD
Extensions (SSE) of Intel processors. Concretely, this
approach processes up to four alignments (since a
score is a 32-bit float value) within each single core
by using 128-bit SSE registers.
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ReaderBatch Processing Writer

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

203.888.836 us 206.633.029 us

Fig. 8: Trace (fragment) illustrating the pipelined execution of Work-flow 1 with 12 threads/cores. Each
horizontal bar shows the type of activity performed by one of the threads at a given time. The execution
yields an interleaved execution with, e.g., I/O from/to disk proceeding in parallel with the batch processing.
The trace shows there are at most one reader and one writer at any time.
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Fig. 9: Parallel performance (execution time in minutes) of HPG Aligner SA for the scenarios determined by
the read length and the mutation rate.

4 EXPERIMENTAL RESULTS

In this section we describe the experimental setup, we
analyze the parallel performance of HPG Aligner SA,
and we report a comparative study of the computa-
tional performance (speed) and sensitivity of the pro-
posed algorithm against three state-of-the-art aligners.

4.1 Experimental setup

The experimental evaluation of the aligner was per-
formed using simulated single-end datasets, obtained
with the beers [28] simulation engine, for 80 million

reads from the human genome and read lengths of
100, 150, 250, and 400 nts. For each one of these
cases, three scenarios were designed, corresponding
to mutation rates of 0.1%, 1%, and 2%. The indel
frequency being the default (0.05%).

In the previous section we referred a number of
parameters that affect the speed of HPG Aligner SA.
For this particular setup, we set the minimum and
maximum intron dimensions to 40 and 500,000 nts,
respectively; the minimum CAL size was set to 20
nts; and the (EMBOSS) SWA configuration employed
default values (match: 5, mismatch: -4, gap open: 10,
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Fig. 10: Speed-ups of HPG Aligner SA for 100–nt reads, 0.1% mutation rate (left); and 400–nt reads, 2% mutation
rate (right).

Read Mutation Number of threads/cores

length (nts) rate (%) 2 4 6 8 10 12

100
0.1 1.90 3.61 5.10 6.75 8.29 9.37
1 1.88 3.62 5.15 6.96 8.51 9.75
2 1.84 3.50 4.99 6.83 8.42 9.71

150
0.1 1.92 3.66 5.02 6.81 8.28 9.32
1 1.94 3.75 5.27 6.99 8.54 9.40
2 1.94 3.84 5.24 7.03 8.48 9.19

250
0.1 1.86 3.57 5.04 6.77 8.26 9.35
1 1.82 3.64 5.09 6.86 8.44 9.73
2 1.79 3.46 4.85 6.66 8.22 9.45

400
0.1 1.93 3.66 5.14 6.93 8.37 9.23
1 1.89 3.65 5.11 6.98 8.59 9.85
2 1.94 3.74 5.28 7.04 8.61 9.81

TABLE 1: Speed-up of HPG Aligner SA for the scenarios determined by the read length and the mutation rate.

Read Mutation Work-flow 1 stages Work-flow 2 stages

length (nts) rate (%) A B C D E A B C

0.1 2.14 6.19 18.41 11.59 4.60 0.20 7.77 0.43
100 1 1.99 5.25 38.62 20.40 3.56 0.57 15.76 1.39

2 1.92 5.02 59.28 28.45 2.97 0.92 42.44 2.30

TABLE 2: Execution time (in minutes) of the stages of work-flows 1 and 2 for reads of 100 nt and different
mutation rates.

and gap extend: 0.5).
All the experiments were performed on a plat-

form equipped with two Intel Xeon E5645 processors
(6 cores per processor) at 2.4 GHz, and 48 GBytes of
RAM. In all cases, each thread is pinned to a different
physical core.

4.2 Execution time and parallel performance
We first analyze the performance and parallel scalabil-
ity of HPG Aligner SA. Figure 9 shows the execution
time of the work-flow-based aligner for 1, 4, 6, 8 and
12 threads. These results expose the linear dependen-
cies between the mutation rate/read length and the
execution time of HPG Aligner SA. An aspect to note
is the significant variation of the execution time when
the mutation rate is increased from 1% to 2% for the

100–nt case (top-left plot), which contrasts with the
behavior for the remaining three cases (150, 250 and
400–nt read length). For example, in the experiments
with a single thread, we observe an increase of time
by a factor of 1.62× when the mutation rate raises
from 1 to 2% for the 100–nt case, but a considerably
smaller one, e.g., around 1.15× for the 150–nt one.
On the other hand, when the mutation rate increases
from 0.1 to 1%, the behavior for all four read lengths
is quite similar, with variation rates that range from
1.63× (400–nt reads, 12 threads) to 1.91× (250–nt, 2
threads). From the point of view of the read length,
there is a close relation between the performance and
the mutation rates 0.1% and 1% as both show in-
creases of about 1.2×, 1.8× and 2.7× when the length
varies from 100 to 150, 250 and 400 nts, respectively.
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When the mutation rate is 2%, these magnitudes vary
notably though, with factors around 0.9×, 1.4× and
1.9× when moving from 100 to 150, 250 and 400 nts,
respectively.

Table 1 displays the speed-ups for HPG Aligner SA,
defined as the ratio between the execution time ob-
tained with 1 and t threads/cores. From the point
of view of concurrency, these results reveal the no-
table parallel performance and scalability of HPG
Aligner SA when up to 12 cores (the highest possible
number in this platform) are involved, with values
that are quite independent of the read length and
mutation rate. Figure 10 illustrates the scalability of
the complete aligner as well as the two embedded
work-flows for two of the testbed cases (100–nt reads,
0.1% mutation rate; and 400–nt reads, 2% mutation
rate). These plots show that the performance of the
complete aligner (labeled there as W1+W2) closely
follows that of Work-flow 1, while the throughput
of Work-flow 2 can be higher or lower than that of
the first work-flow, depending on the read length and
mutation rate.

Table 2 shows the sequential computing time break-
down of the different stages of each work-flow for
the 100–nt dataset with mutation rates of 0.1%, 1%,
and 2%. (Only the time actually spent in each stage
is recorded. The total sequential time is a bit greater
than the sum of these times, due to the inter stage
communications.) As shown, when the mutation rate
increases, more work is diverted to stages C and D in
work-flow 1 (more time is spent in these stages), and
more reads will go through the work-flow 2 (stage E
of work-flow 1, which writes reads already mapped,
takes less time; but the work-flow 2 stages take
longer). The more time consuming stage is stage C,
region and CAL seeker, of the first work-flow.

4.3 Comparative study

We next compare both the speed and sensitivity
of HPG Aligner SA against three recent aligners:
TopHat 2+Bowtie 2 (v2.0.10+2.1.0), MapSplice (v2.1.5),
and STAR (v2.3.0e). In order to obtain the following
results, the RNA-seq mappers were executed with the
parameters listed in Table 3. In all cases, we tested
the optimal number of threads, but we only report
the results corresponding to the best (i.e., shortest)
execution time. In general, this corresponds to the use
of t=12 threads. Given their long execution time, we
only evaluated TopHat 2+Bowtie 2 (v2.0.10+2.1.0) and
MapSplice for 100–nt reads.

The results in the top-left plot of Figure 11 and the
columns labelled as “Time” in Table 4 show that HPG
Aligner SA and STAR are consistently faster than Map-
Splice and TopHat 2+Bowtie 2. The remaining plots
in Figure 11 and Table 5 extend these results for the
two fastest aligners, HPG Aligner SA and STAR, and
the remaining testbed cases. Focusing the analysis on

the two fastest aligners, the time differences between
them are always in favor of HPG Aligner SA, and grow
with the mutation rate and, especially, the read length.

Tables 4 and 5 report the sensitivity of the mappers
using two different metrics. RM corresponds to the
percentage of Reads Mapped, and RCM to the per-
centage of Reads Correctly Mapped. The beers simula-
tor provides, for each read, its position (chromosome,
position and strand), and its CIGAR [23]. Therefore,
we report a read as correctly mapped only if it has the
same position and CIGAR as these stated by beers,
which implies that it matches the correct intron-exon
gene structure. Table 4 shows the results obtained by
the four aligners with reads of 100 nts and the three
mutation ratios. As revealed there, for mutation rates
of 1% and 2%, the pair TopHat 2+Bowtie 2 offers
mapping percentages much lower than those reported
for HPG Aligner SA, STAR, and MapSplice. For this
particular read length, the latter three aligners deliver
very similar sensitivity results in the RM metric, while
HPG Aligner SA and MapSplice clearly outperform
STAR in terms of RCM. Comparing the best two
mappers, MapSplice seems to be able to map a slightly
higher amount of reads (RM), but HPG Aligner SA
offers a slightly better RCM rate.

Table 5 examines the sensitivities achieved by the
two fastest aligners, HPG Aligner SA and STAR, for
reads of 150, 250, and 400 nts. These results show
that HPG Aligner SA consistently offers higher RCM
percentages than STAR. At this point we emphasize
that, given that the two mappers attain similar rates
of mapped reads (RM), the key is how many of these
alignments are correct (RCM).

Tables 6 and 7 analyze the sensitivity of the map-
pers using the RCM metric only, with the simulated
reads of each dataset classified into five sub-sets. The
first four sub-sets correspond to simulated reads that
span 1, 2, 3 or more exons. The last subset correspond
to simulated reads that extend into one of the exons
by 10 nts or less (labeled as “ m.e.”). These tables
report that HPG Aligner SA attains higher sensitivity
than STAR in nearly all the cases and outperforms
both MapSplice and TopHat 2+Bowtie 2 in 8 out of
the 15 cases of the comparison.

Finally, Tables 8 and 9 report the number of splice
junctions present in each dataset together with the
percentage of splice junctions that each aligner de-
tects. These results show that HPG Aligner SA is able
to detect more splice junctions than the rest of the
aligners for all the datasets evaluated.

5 CONCLUSIONS
We have introduced a sequence of two pipelined
work-flows for RNA sequencing, HPG Aligner SA,
that exploits current multicore technology to effi-
ciently perform short read mapping onto a reference
genome. Our solution leverages a well-known princi-
ple, that of “making the common case fast”, to apply a
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HPG Aligner SA hpg-aligner rna -i ~/GENOMES/SA_INDEX/ -f simulate_dataset.fq \

--cpu-threads t -o outputHPG --fast-mode --read-batch-size 20000

STAR STAR --genomeDir STAR_INDEX/ --readFilesIn simulate_dataset.fq --runThreadN t \

--outFileNamePrefix outputSTAR/

MapSplice mapsplice.py -c MAP_SPLICE/ -x MAP_SPLICE/hs.73 \

-1 simulate_dataset.fq -p t -o outputMapSplice/

TopHat 2+Bowtie 2 tophat -p t --no-sort-bam --no-convert-bam -o outputTopHat2 \

Bowtie2_index/Homo_Sapiens_Bowtie simulate_dataset.fq

TABLE 3: Command lines for the execution of the aligners included in the experimental comparison. In the
experiments, t was replaced by the specific number of threads/cores.

 0

 100

 200

 300

 400

 500

0.1 1 2

T
im

e
 (

m
in

u
te

s)

Mutation rate (%)

Comparison of aligners for 100-nt reads

HPG Aligner SA
STAR

Tophat 2+Bowtie 2
Mapsplice

 0

 10

 20

 30

 40

 50

 60

0.1 1 2

T
im

e
 (

m
in

u
te

s)

Mutation rate (%)

Comparison of aligners for 150-nt reads

HPG Aligner SA
STAR

 0

 10

 20

 30

 40

 50

 60

0.1 1 2

T
im

e
 (

m
in

u
te

s)

Mutation rate (%)

Comparison of aligners for 250-nt reads

HPG Aligner SA
STAR

 0

 10

 20

 30

 40

 50

 60

0.1 1 2

T
im

e
 (

m
in

u
te

s)

Mutation rate (%)

Comparison of aligners for 400-nt reads

HPG Aligner SA
STAR

Fig. 11: Computational performance (execution time in minutes) of the four RNA-seq aligners for the scenarios
determined by the read length and the mutation rate.

Read Mutation HPG Aligner SA STAR MapSplice TopHat 2+Bowtie 2

length (nts) rate (%) RM RCM Time RM RCM Time RM RCM Time RM RCM Time

100
0.1 99.20 96.00 8.30 99.30 91.39 10.22 99.60 95.87 314.00 97.90 96.20 385.00
1 98.80 94.80 12.30 99.20 86.70 13.07 99.30 94.90 319.00 87.98 86.95 436.00
2 97.20 92.52 18.20 97.76 81.48 15.20 97.70 91.30 330.00 63.49 62.77 523.00

TABLE 4: Sensitivity (RM and RCM in %) and execution time (in minutes) of the four RNA-seq aligners for
the scenarios determined by the read length and the mutation rate.
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Read Mutation HPG Aligner SA STAR

length (nts) rate (%) RM RCM Time RM RCM Time

150
0.1 99.30 96.20 9.80 99.64 91.96 11.98
1 98.86 94.57 15.20 99.50 86.95 15.78
2 98.21 93.76 17.40 99.29 82.50 19.38

250
0.1 98.90 93.95 13.15 99.40 90.39 16.08
1 98.30 92.40 20.80 98.90 85.65 23.57
2 97.70 91.34 24.90 98.70 80.38 29.53

400
0.1 98.60 92.00 18.90 99.26 89.23 23.50
1 97.70 89.20 28.70 98.70 84.16 39.33
2 94.70 86.20 32.80 95.40 64.49 53.23

TABLE 5: Sensitivity (RM and RCM in %) and execution time (in minutes) of HPG Aligner SA and STAR for
the scenarios determined by the read length and the mutation rate.

Read length (nts) Mutation rate (%) Exons Reads (%) HPG
Aligner

SA

STAR MapSplice TopHat 2
+

Botwie 2

100

0.1

1 75.10 97.95 97.74 98.63 98.45
2 22.62 92.19 76.04 88.66 90.14
3 2.19 74.44 35.93 78.46 84.05

>3 0.09 29.83 6.65 32.64 40.07
m.e. 5.21 77.00 2.70 66.71 88.15

1

1 74.49 96.42 94.13 97.91 89.61
2 23.09 91.67 69.02 87.28 79.49
3 2.35 76.00 28.67 75.92 76.86

>3 0.07 52.03 12.85 61.84 65.15
m.e. 5.18 79.37 1.97 65.74 78.88

2

1 75.77 93.58 88.94 95.06 65.02
2 22.09 90.91 61.80 81.43 56.06
3 2.07 72.46 21.03 61.54 52.68

>3 0.07 55.63 9.75 44.41 47.75
m.e. 4.91 79.32 1.68 57.64 55.12

TABLE 6: Sensitivity (RCM in %) of the four RNA-seq aligners for the scenarios determined by the read length,
the mutation rate, and the number of exons spanned by each read (1, 2, 3 or more). The label “m.e.” denotes
a case where the reads extend into one of the exons by 10 nts or less.

Mutation 150 nts 250 nts 400 nts

rate (%) Exons Reads (%) HPG
Aligner

SA

STAR Reads (%) HPG
Aligner

SA

STAR Reads (%) HPG
Aligner

SA

STAR

0.1

1 68.37 98.09 98.17 61.37 97.77 97.90 59.54 97.63 96.54
2 23.99 94.92 85.74 15.82 93.35 89.02 8.63 91.89 87.76
3 7.14 84.80 57.87 17.18 87.09 76.41 12.70 86.70 84.46

>3 0.50 69.17 31.96 5.63 74.91 55.07 19.13 78.26 70.34
m.e. 10.63 87.82 53.02 17.04 85.29 67.46 20.06 82.68 72.51

1

1 67.60 96.81 94.41 61.65 96.20 93.58 58.05 96.06 93.76
2 24.42 92.53 79.16 15.53 91.46 84.24 8.86 89.16 82.17
3 7.37 82.83 49.30 16.86 85.84 70.80 12.84 82.72 78.67

>3 0.61 70.02 27.92 5.96 74.22 49.54 20.15 73.35 60.91
m.e. 10.92 86.71 47.24 16.88 84.39 63.73 21.05 80.25 67.60

2

1 68.19 95.61 90.33 61.89 95.78 89.33 59.31 90.48 71.06
2 24.26 92.71 73.80 15.51 88.99 77.70 8.90 85.85 63.49
3 7.04 81.47 41.85 17.16 83.48 62.99 12.73 83.13 59.99

>3 0.51 66.40 19.12 5.44 72.34 41.03 19.06 75.33 47.52
m.e. 10.78 87.38 43.48 16.73 82.85 58.34 20.00 80.60 51.98

TABLE 7: Sensitivity (RCM in %) of HPG Aligner SA and STAR for the scenarios determined by the read
length, the mutation rate, and the number of exons spanned by each read (1, 2, 3, or more). The label “m.e.”
denotes a case where the reads extend into one of the exons by 10 nts or less.



H. MARTÍNEZ et al.: CONCURRENT AND ACCURATE SHORT READ MAPPING ON MULTICORE PROCESSORS 13

Read length (nts) Mutation rate (%) #Splice junctions HPG
Aligner SA

STAR MapSplice TopHat 2 +
Bowtie 2

100
0.1 58,367 95.64 95.13 92.80 94.67
1 56,527 96.69 95.90 93.87 93.96
2 57,113 96.04 95.30 92.32 89.89

TABLE 8: Number of splice junctions present in each dataset and percentage of splice junctions detected by
each aligner.

Read length (nts) Mutation rate (%) #Splice junctions HPG
Aligner SA

STAR

150
0.1 58,687 97.54 96.50
1 59,040 97.65 96.43
2 58,502 97.40 96.28

250
0.1 58,790 97.85 96.83
1 59,776 98.00 96.77
2 59,167 97.92 96.70

400
0.1 58,342 97.91 96.59
1 59,305 98.32 97.30
2 58,679 97.93 96.52

TABLE 9: Number of splice junctions present in each dataset and percentage of splice junctions detected by
HPG Aligner SA and STAR.

variant of SA in order to rapidly map those reads with
no indels, as the reliability of current NGS technology
ensures that these cases constitute a large fraction of
the total. After this initial stage, mapping failures are
expected to be mostly due to reads with more than
1 indel or, alternatively, reads that span over two or
more exons. To tackle both scenarios, we proceed by
dividing the reads into a collection of short seeds
(of variable length), which are next mapped yielding
a collection of CALs in the reference genome. This
information is finally passed to the accurate SWA that,
under these conditions, turns most of the previous
failures into successful mappings at a low cost.

The experiments on an Intel-based server with a
large number of cores reveal the parallel efficiency
of the HPG Aligner SA work-flow-based algorithm,
which outperforms other state-of-the-art aligners from
the points of view of both execution time and sensi-
tivity.
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