
1 

Using skewed mirror symmetry for optimisation-based 3D line-
drawing recognition 

A. Piquer*, R.R. Martin+ and P. Company* 
*Dept. of Technology, Universitat Jaume I, E-12004, Castellon, Spain 

E-mail: pvicent@tec.uji.es, pcompany@tec.uji.es  
 

+ Dept. of Computer Science, Cardiff University, PO Box 916, Cardiff, CF24 3XF, UK 
E-mail: ralph@cs.cf.ac.uk 

Abstract 
We aim to reconstruct three-dimensional polyhedral solids from axonometric-like line sketches. A new approach is 

proposed to make use of planes of mirror symmetry detected in sketches. Taking into account mirror symmetry of such 
polyhedra can significantly improve the reconstruction process. Applying symmetry as a regularity in optimisation-based 
reconstruction is shown to be adequate by itself, without the need for other inflation techniques or regularities. 
Furthermore, we show how symmetry can be used to reduce the size of the reconstruction problem, leading to a reduction 
in computing time. 
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1 Introduction 
Sketching-based geometric modellers have emerged during the last decade [1-5], providing a very intuitive and 

easy to use interface to 3D reconstruction engines. Optimisation has been used with some success in this sketch-based 
modelling approach. One of the main challenges in optimisation-based 3D reconstruction is the mathematical 
formulation of perceptual cues, also called artefacts, or regularities. At present, they lead to poorly defined objective 
functions, and, hence the success rate is below the expectations of users. In addition, optimisation processes are 
bottlenecks for an interactive session, with clearly unacceptable calculation times (typically up to several minutes). 

Using symmetry improves optimisation performance, since it is a fundamental concept which human visual 
perception utilizes [6]. Furthermore, many man-made objects are symmetric, both because this makes them easier to 
interpret and manufacture, and because of functional and aesthetic requirements. Studies have shown that a large 
proportion of industrial components have some symmetry [7]. 

In a previous paper, we presented a novel method for determining the skewed planes of symmetry of polyhedral 
objects, starting with a two-dimensional axonometric-like view [8]. This algorithm is aimed at single view 
reconstruction: 3D reconstruction from multiple orthographic views requires a radically different approach. The nature 
of shapes that can be reconstructed with this optimisation-based approach extends, at present, to polyhedral blocks 
(manifolds), origami objects (sheet metal) and wire frame models (non-manifold objects). 

In this paper, we present a new optimisation regularity based on a novel formulation of model symmetry. Its 
advantage in the success rate of optimisation approaches are discussed. Furthermore, we discuss the advantages of 
dealing with model symmetries as constraints, instead of as regularities, in order to significantly reduce the calculation 
time for optimisation-based 3D reconstruction. 

2 Related work 
Various research exists focused on using freehand drawings and sketches as a way to obtain 3D geometric models 

via input devices, like graphic tablets and tablet PCs (Figure 1). Gestural modelling systems are one approach. 
Predefined gestures encode a set of geometric manipulation operations [9-13]. Reconstructive modelling is an 
alternative, where geometric reconstruction techniques build the object’s geometry from a sketch that represents a 
projection of the object [12, 14-19]. Such systems can be categorized as projective (when projection invariants are 
extensively used to recover as much information on the object as possible), or perceptual (based on the way human 
perception creates very rich three-dimensional scenes from retinal images). However, often both categories are used 
together. For instance, optimisation approaches, which use perceptual rules to interpret regularities, also use projective 
principles like inflation (Figure 1d), which is a kind of inverse projection process. 
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Figure 1. From sketch to 3D model 

Optimisation-based 3D reconstruction is discussed in [20-27]. We simply note that optimisation-based 
reconstruction is a two-step strategy where an inflation process is used to transform 2-D line drawings into 3D models 
by choosing the appropriate z coordinate for every vertex through an optimisation process. In other words, coordinates 
are related to a so-called inflation-coordinate-system, where the xy coordinate plane is the drawing plane and the 
infinite set of three-dimensional objects whose orthogonal projection matches the given line drawing (i.e. the 
orthographic extension) is defined by the set of z coordinates of all model vertices: z = (z1, z2, ..., zn). Only a few or 
even just one of these models fits perceptual requirements, i.e. many of the models in the orthographic extension are 
tangles (Figure 1d), models that contain twisted, non-planar faces. The psychologically plausible model is selected by 
optimising a figure of merit, or objective function, defined as a weighted sum of contributions from perceptual cues, as 
suggested by Equation 1. 

  F(z) = Σ αj Rj(z)  Equation 1 

Various researchers have studied such perceptual cues or regularities [22, 24, 28, 29]. Currently, inflation 
approaches succeed in 3D reconstruction whenever the input drawings are geometrically correct, i.e. they correspond 
to an orthogonal projection of a real shape. However, if input drawings are approximate sketches (see Figure 1a), with 
imprecise coordinates, inflation gives distorted or even tangled shapes. Sketching interfaces typically perform on-line 
conversion of sketched lines into straight segments, then join segments whose ends are close to each other, then ensure 
parallelism where needed, and so on (Figure 1b). A detailed description of one such analyser is given in [14]. 
Additionally, on-line capabilities may be complemented by off-line tidying of the complete sketch after the user 
finishes drawing. This can perform a more detailed analysis of the user’s sketch, giving a better opportunity to 
discover those design intents that are difficult to detect on-line. 

In this paper, we are concerned with the particular regularity of model symmetry, which is often an explicit design 
intent. The effects of its absence can be clearly seen in the front, side and upper views of the output 3-D model of 
Figure 1e. Previous work exists on the detection and application of symmetry to object modelling and recognition 
[30]. 

In our approach, a symmetry plane is obtained from a set of symmetry lines. Finding model symmetry planes 
requires the prior detection of axes of skewed facial symmetry, which, in turn, requires edges bounding faces to be 
previously recognised in the two-dimensional image [8]. We need to search for 2-D circuits representing intersections 
of the model with a symmetry plane. Each skewed plane of symmetry is made up of skewed axes of symmetry and 
edges of various faces. A closed sequence of axes and edges that meet each other must be found, forming a planar 
polygon. The plane that contains that polygon of symmetry represents a plane of symmetry (Figure 2). We perform our 
computation in 2D, so the resulting output comprises skewed planes of symmetry: real planes of symmetry viewed 
from some (unknown) viewing direction [8]. 

 

 

Figure 2. Input sketch, wire-frame line drawing and symmetry plane, represented as a 2-D circuit (left) and the final 
reconstructed 3-D model (right). 
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2.1 Previous Approaches 

The simplest way to use symmetry planes in optimisation-based reconstruction is to consider them as special 
(virtual) faces of the final model. In such an approach, the symmetry planes are optimised using the same face 
planarity regularity which is applied to other faces. 

Suppose the symmetry plane has coefficients A, B, C and D in the equation Ax +By + Cz + D = 0. In our 
implementation, the first three coefficients were estimated by computing the respective areas of the projection of the 
virtual face in the yz plane (for A), xz plane (for B), and xy plane (for C). D was estimated by simply substituting the 
coordinates of one of the vertices into the equation. Poor results were obtained. By using symmetry planes, calculation 
times increased, while the final model precision was not enhanced appreciably. 

An alternative approach is to use as a regularity criterion the deviation from the theoretically equal distances each 
pair of symmetric vertices ought to have from the symmetry plane. The n pairs of signed distances of symmetric 
vertices should satisfy  Equation 2: 

 

€ 

distance(vi, plane)
i= 0

n−1

∑ = 0  Equation 2 

However, this is too simplistic. Equation2 by itself does not ensure that each pair of symmetric vertices is 
connected by a line orthogonal to the symmetry plane: any point on a given plane parallel to the symmetry plane has 
the same distance from it. Checking orthogonality of these lines requires identifying every pair of symmetrical 
vertices, and the calculation time becomes very high. (Actually, a better approach is to sum the squares of the 
distances, but this would not affect the above remarks.) 

3 Overview of our new approach 
Once the symmetry planes have been determined [8], in order to deal with symmetry, it is convenient to introduce a 

new coordinate system, a so-called symmetry system, as explained in the next Section. This allows the symmetry 
condition to be formulated in a compact and convenient way. 

To do this, symmetric vertices have to be properly paired or matched. This is simple whenever a vertex in one half 
is connected to its pair through an edge that crosses the symmetry plane, with midpoint on the plane, as for example in 
e1, e2 and e3 in Figure 3(a), or e4 and e5 in Figure 3(b). 
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Figure 3. Determination of subsets of symmetrical vertices. 

However, the general matching problem is more difficult, and needs to be solved for a practical formulation of 
bilateral symmetry regularity. 

Note that the presence of a symmetry plane can be used to reduce the size of the inflation problem. Because of the 
symmetry, only one half of the object needs to be inflated. When multiple symmetry planes exist, further reductions of 
problem size can be obtained. Overall, a much smaller problem may be result. 

4 Symmetry coordinate system 
We introduce a different symmetry coordinate system for each symmetry plane, in which the symmetry plane is the 

xy plane. One such system (OS1 XS1 YS1 ZS1), together with the inflation coordinate system (OI XI YI ZI) and the model 
coordinate system (OM XM YM ZM), is illustrated in Figure 4. The origin is placed at the centroid of the planar symmetry 
polygon, which is invariant and so ensures that the origin of all symmetry systems is the same. XS1 and YS1 are aligned 
with two model coordinate system axes, whenever such a system has already been determined (this problem is related 
to detecting main directions, and is beyond the scope of this paper [24]). ZS1 is chosen to give a right hand system. 
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Figure 4. Inflation versus model and symmetry reference systems. 

The best-fit plane defined by all vertices of the symmetry polygon is initially calculated using the method given at 
the start of Section 2.1. 

Let (xc, yc, zc) be the coordinates of the centroid of the symmetry polygon. Let (u1, u2, u3) be a unit vector normal to 

the symmetry plane, and let R be defined by: 2
3

2
2 uuR += . We denote the coordinates of a vertex P in the model 

by (xp, yp, zp) when they are in the inflation coordinate system, and by (x’p, y’p, z’p) when they are in the symmetry 
coordinate system. Then, the homogeneous transformation between these systems is: 
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5 Symmetry condition 
The set of n vertices of a symmetric model can be renumbered to give three subsets satisfying: 

 (1, 2,…,n)= (1, 2,…,m) ,  
(m+1, m+2,…,2m) , 
(2m+1, 2m+2,…,n) 

with  z’1,…,z’m > 0 
with  z’m+1,…,z’2m < 0 
with  z’2m+1,…,z’n = 0 

  Equation 4 

In other words, m points lie on one side of the symmetry plane, another m points lie on the opposite side, and n–2m 
points are contained in the symmetry plane (m may be 0). The points in the second subset are paired with the points in 
the first subset, so that point 1 corresponds to point m + 1 and so on. This gives the following conditions: 

 
 

x’1= x’m+1,…, x’m= x’2m 

y’1= y’m+1,…, y’m= y’2m 

z’1= -z’m+1,…, z’m= -z’2m   Equation 5 

This is the simplest formulation of the symmetry condition for vertices, and is the basic formulation of our bilateral 
symmetry regularity. 

6 Matching symmetric vertices 
Once the symmetry plane has been detected, if a full symmetry formulation is desired, a matching vertex must be 

located for each vertex. Our algorithm fills the elements of a 2 x n matrix V. In V(1,i) the vertex symmetric to vertex i 
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(its match) is stored. The second row V(2,i) stores a label indicating which subset vertex i belongs to. The label +1 is 
assigned to one of the sides of the symmetry plane, label –1 is assigned to the other side, and label 0 corresponds to 
vertices on the symmetry plane. 

6.1 Identification of the two sides of a symmetrical model 

Identification starts at one of the faces divided by the symmetry plane. One of the sides of the symmetry plane is 
arbitrarily assigned +1 without loss of generality. Next, adjacent faces that are also cut by the symmetry plane are 
evaluated in turn. In this way, common vertices can be used to guarantee consistency in labelling propagation. 

In a third step, the process is consistently extended to the rest of the faces. All vertices in such faces are assigned 
the same label as the one assigned to previously labelled vertices of the face. 

Vertices belonging to the symmetry polygon are finally visited and labelled 0. 

 

6.2 Matching vertices 

Next, symmetry axes are considered in turn, and the vertices of the faces they belong to are explored. Their vertices 
are matched trough a simultaneous clockwise-anticlockwise scan. For instance, in face 11 (Figure 6), if evaluation 
starts at the a axis, which cuts the mid-point of edge 11-8, it is easy to fix vertices 11 and 8 as a pair of symmetrical 
vertices. The vertices of one half of the face starting at this edge are scanned clockwise (8-7-6-3) and the other half 
anticlockwise (11-10-9-4), and the two resulting lists are paired to match all the vertices in the face. The same 
procedure is applied to each face sharing a line with the symmetry polygon. See Figure 6. 

 
 

 

Figure 6. Faces with axis belonging to the polygon of symmetry. 

Once all such faces have been evaluated, we continue with the remaining faces. In that case, symmetry between 
vertices involves vertices of different faces. Thus, the objective is to find symmetrical faces. 

 

Face No. Vertices on faces 
Face 0 
Face 1 
Face 2 
Face 3 
Face 4 
Face 5 
Face 6 
Face 7 
Face 8 
Face 9 
Face 10 
Face 11 

0, 2, 5, 1 
2, 0, 3, 4 
18, 16, 17, 19 
6, 13, 12, 7 
7, 12, 15, 8 
0, 1, 14, 13, 6, 3 
12, 13, 14, 15 
17, 16, 9, 10  
5, 2, 4, 9, 16, 18 
17, 10, 11, 19 
15, 14, 1, 5, 18, 19, 11, 8 
11, 8, 7, 6, 3, 4, 9, 10 

  
 

2 5 0 4 3 1 9 10 11 6 7 8 17 16 18 19 13 12 14 15 
V= 

+1 +1 -1 +1 -1 -1 +1 +1 +1 -1 -1 -1 +1 +1 +1 +1 -1 -1 -1 -1 
 

Figure 5. Matching symmetrical vertices. 
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The list of such incomplete faces is scanned by searching for a face with at least three vertices already labelled (vi, 
vj, vk ⊂ Fm); two of these (at least) must be at the ends of an edge shared with an already-processed face. Three non-
collinear points determine a plane, so the vertices symmetric to (vi, vj, vk) must determine a symmetric face (v’i, v’j, v’k 
⊂ F’m). The correspondence between the vertices must still be found, and is done by considering the vertices at the 
ends of the edges shared with processed faces. (see Figure 7: for example 6-7 in face 3, and 9-10 in face 7). The 
relative ordering of vertices around the faces may be the same or opposite, and must be determined. For instance, the 
correspondence between faces 3 and 7 has oppositely ordered vertices (9-10-17-16 and 6-7-12-13). However, faces 9 
and 4 have a correspondence (19-17-10-11 and 15-12-7-8) with vertices arranged in the same order. 

 

 

Figure 7. Faces without axis belonging to the polygon of symmetry 

7 Symmetry as regularity 
Once the symmetry polygon has been detected and matching of vertices completed, the symmetry regularity is easy 

to formulate. In reconstruction by optimisation, every regularity has a cost, and the objective is to minimize the sum of 
costs. A cost is chosen to be zero when the desired condition is achieved, and differs from zero as we go away from 
this ideal. Hence, the bilateral symmetry condition formulated in Equation 5, can be reformulated as the standard 
deviation (σ2) of the difference of coordinates of all pairs of symmetrical vertices: 

 )'_()'_()'_( 222 zsumydifxdifCost j σσσ ++=  Equation 6 

where    
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The standard deviations are calculated with an assumed mean equal to zero. Using the real mean does not improve 
reconstruction results and the objective of the function is distorted. The real objective is to find variables in which the 
mean of every summand is also zero. When every pair of vertices fulfils the condition, the cost of the regularity 
reaches the minimum. 

The cost defined above is for a single plane of symmetry. The total cost for a model with r planes of symmetry is 
defined as: 

 ∑
=

=
r

j
jCost

r
SymmetryofCost

1

1__  Equation 7 

8 Model rebuilt from the half part 
Faster reconstruction can be based on the idea that, knowing the symmetric pairs of vertices, information about just 

one half of the model in the drawing can be used for reconstruction, and once a half model has been obtained, then 
symmetry can be applied to obtain the rebuilt complete model. This reduces the number of vertices, edges and faces in 
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the sketch graph, thus reducing calculation times for the reconstruction process. The half graph is easy to obtain after 
pairs of symmetrical vertices have already been found. This idea can be extended to multiple planes of symmetry. 

Symmetry in 3-D space can be obtained by composition of transformations of the form: 
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S  Equation 8 

where (u 1, u2, u3) is the unit normal vector of the symmetry plane (Ax+By+Cz+D=0). 
Having found a plane of symmetry and a half 3-D model, applying S to its vertices allows the complete 3-D model to 
be obtained. Actually, as the final model retains x and y vertex coordinates from the original drawing, only the 
computation of z’ coordinates for reflected vertices is required. If (x, y, z) are the coordinates of a vertex in the 
reconstructed half, the z’ for the reflected vertex is given by: 

 3
2
33231 2)21(22' Duzuyuuxuuz −⋅−+⋅−⋅−=  Equation 9 

Note that information is used from the whole object even when we eliminate half of the figure. The planes of 
symmetry [8] are found from points situated at the midpoints of edges (and vertices). Thus, 3-D object construction is 
based on information averaged from both halves. 

9 Results 
A sketch with a single symmetry plane is used to illustrate the results of the different approaches. Initially, a tidied 

line drawing and symmetry polygon were automatically obtained (see Figure 8). 
 

a) b) c)  

Figure 8. a) Input sketch, b) line drawing, c) symmetry polygon. 

If the symmetry regularity is formulated only in terms of the planarity of symmetry plane (see Section 2.1), the 
result is a model with a nearly planar symmetry plane, but which is not the shape intended (see Figure 9: an 
axonometric-like image of the model is given, together with front, top and side views). Furthermore, the condition is 
also satisfied by a model in which all z coordinates are 0. Some other inflation method is needed to escape from this 
trivial solution. The same happens if orthogonality between the symmetry plane and edges-crossing-symmetry-plane is 
instead enforced (see Figure 10). When both conditions are enforced, the objective function is ill-conditioned, 
resulting in a clearly tangled model, corresponding to a local minimum in the objective function: see Figure 11. 

In all three cases, a simple hill climbing optimisation process was used, and a random inflation was done in 
advance to avoid the trivial solution (all z coordinates 0). Random inflation consists of randomly choosing all zi in the 
normalized interval [0, max(Δx, Δy)]. Because of the initial random inflation, the initial figure to be reconstructed can 
vary, and depending on this, the final results can vary slightly, and are not always exactly the same. 

 
 

 

Figure 9. Model obtained using symmetry plane 
planarity as the only regularity. 

Figure 10. Model obtained using orthogonality 
among edges-crossing-symmetry-plane and the 
proper symmetry plane as the only regularity. 
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Finally, using the bilateral symmetry regularity described in Section 7, a much better model was obtained (see 
Figure 12). Additionally, no initial inflation method was required, since symmetric-model regularity is not trivially 
satisfied in the input image. The regularity is formulated as a quadric function (see Equations 7-8), which provides 
quicker convergence than a linear function. 

 
 

 
 

Figure 11. Model obtained using simultaneously 
symmetry plane planarity and orthogonality among 

edges-crossing-symmetry-plane and the proper 
symmetry plane as regularities. 

Figure 12. Model obtained using the bilateral 
symmetry regularity. 

Next, a table summarizes some examples that show the performance of our new approach. Four examples are 
shown as they appeared after the symmetry regularity was applied alone. 

 

Line drawing 3D model Process  Line drawing 3D model Process 

 

 
19 edges 
12 vertices 

 

 

9 faces 
1 plane of 
symmetry 
Inflation time: 
less than 1” 

  

 
33 edges 
22 vertices 

 

 

13 faces 
1 plane of 
symmetry 
Inflation time 
1”  

 

 
24 edges 
16 vertices 

 

 

10 faces 
1 plane of 
symmetry 
Inflation time: 
less than 1” 

  

 
46 edges 
30 vertices 

    

 

18 faces 
1 plane of 
symmetry 
Inflation time 
2” 

Table 1 

This regularity is a true regularity. Its use only depends on the detection of characteristic clues in the input 
drawing. It can be applied alone for converting sketches to 3D models, without any other inflation method, and 
without the use of other, possibly conflicting, regularities. Thus, this regularity can be considered as a new inflation 
method by itself. It solves reconstruction for every symmetric sketch for which the planes of symmetry have been 
detected.  

  
 

Figure 13. Model with three planes of symmetry 
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Finally, we give some examples of more complex shapes, to illustrate the benefits of half-part reduction. Figure 13 
shows a shape with three planes of symmetry. Two of them are used to reduce the problem size, then the last one is 
used as a regularity to reconstruct a partial model. Finally, the complete model is restored. In this example, 
computation times are reduced from 3 seconds for reconstruction of the complete drawing to less than 1 second if the 
reduced model is used (on a Pentium III 1GHz, with 256 Mb RAM). 

 a) b)  

Figure 14. Figure with two planes of symmetry. 
Reconstruction from a) 3” and from b) less than 1 

 

b) a)  

Figure 15. Figure with two planes of symmetry. 
Reconstruction from a) 6” and from b) less than 1” 

Our new approach simplifies the process of reconstruction by diminishing the number of variables used in the main 
computation, leading to a reduction of time in the whole process. Extruded models are an exception to this 
observation. They have (at least) one plane of symmetry (orthogonal to the extrusion direction), but the half part 
formed from this has exactly the same number of vertices, edges and faces as the original figure (see Figure 16). 
Furthermore, after this “simplification”, a new plane of symmetry with the same shape as the first is found. An 
additional test must be done for extrusions to prevent this false simplification. 

  
 

Figure 16. Detection of symmetry planes in extruded shapes. 

10 Summary 
This paper considers the three-dimensional reconstruction of polyhedral solids from planar sketches. A new 

approach has been proposed to make use of planes of mirror symmetry detected [8] in sketches. This depends on 
identification of the two symmetric sides in the 2D representation and the matching of vertices using methods given in 
this article. 

Two novel ideas for reconstruction have been presented. The first is to apply symmetry as a regularity in 
optimisation-based reconstruction. In fact, symmetry is shown to be adequate by itself, without the need for other 
inflation techniques or regularities. Good qualitative results and acceptable computing times are provided by this 
method. 

The second idea is to eliminate the duplicated information in symmetrical models before reconstruction. After 
elimination of half of the drawing, reconstruction of the simplified drawing can be made by any of the methods 
already known (and indeed with the first idea above). The aim of this technique is to decrease computing time. This 
objective is achieved in most examples, although not for extrusions. 

Overall, use of symmetry is a powerful method, since it allows complex shapes to be inflated without introducing a 
large set of potentially conflicting heterogeneous regularities (face planarity, orthogonality, and so on), and it does not 
require initial estimates for inflation. Moreover, it has been successfully employed to recursively reduce the problem 
size. 
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