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Abstract 

A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas 

chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization 

(GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical 

ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) 

and chemical ionization (CI) sources, favoring the formation of the [M-Br]+ ion and thus, enhancing sensitivity 

and selectivity. Detection was based in the consecutive loses of HBr from the [M-Br]+ ion to form the specific 

[M-H5Br6]+ and [M-H4Br5]+ ions, which were selected as quantitation (Q) and qualification (q) transitions, 

respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also 

evaluated; calibration curves were found linear from 1 pg/µL to 100 pg/µL for the total HBCD concentration; 

instrumental detection limit was estimated to be 0.10 pg/µL; repeatability and reproducibility, expressed as 

relative standard deviation, were better than 7% in both cases. The application to different real samples 

(polyurethane foam disks (PUFs), food, and marine samples) pointed out a rapid way to identify and allow 

quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 

47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame 

retardants, i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), due 

to their presence in the same fraction when performing the usual sample treatment. 
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Introduction  

Hexabromocyclododecane (HBCD) is a highly lipophilic brominated flame retardant (BFR) most commonly 

used in expanded polystyrene (EPS) and extruded polystyrene (XPS) foams produced for the building and 

construction industry to meet fire safety standards (approximately 96% of total production). HBCD also has 

minor uses as a flame retardant in textile back coatings and high-impact polystyrene (HIPS) used in electronics 

housings. Its use has increased concurrently to restrictions on polybrominated diphenyl ethers (PBDEs) [1]. 

HBCD may be released to air, water, soil, and sediment during manufacture, processing, improper handling, 

improper storage or containment, product usage, and disposal of HBCD-containing products and materials. 

Because of its toxicity, persistence and tendency for bioaccumulation and biomagnification in food chains, 

HBCD is classified by REACH as a substance of very high concern. At its sixth meeting in 2013, the Conference 

of the Parties of the Stockholm Convention adopted the listing of HBCD to Annex A to the Stockholm 

Convention (with specific exemptions; decision SC-6/13) [2]. On 26 November 2014, one year after the official 

communication to Parties, the amendment to the Convention listing HBCD in Annex A to the Stockholm 

Convention entered into force for most parties. Technical HBCD is predominantly comprised of three 

1,2,5,6,9,10-HBCD diastereomers, γ-HBCD (70%), α-HBCD (16%) and β-HBCD (13%) [3]. Both GC-MS and 

LC-MS are commonly used for the determination of HBCD, obtaining similar results for total HBCD 

concentrations [4]. However, GC-MS is not capable to differentiate between the individual isomers, as the 

diastereomers interconvert at temperatures above 160 ºC. 

Nevertheless, the availability of a highly sensitive and selective screening method for HBCD by GC-MS could 

be interesting as this compound elutes in the same fraction as PBDEs when applying conventional sample 

treatment for POPs analysis as used in the majority of routine laboratories. Thus, only in those cases where the 

concentration of total HBCD is above established limits in the GC-MS screening, quantitative analysis of 

individual isomers would be carried out using the isomer selective LC methods [5, 6]. Additionally, HBCD 

debromination in negative ion chemical ionization (NICI) [7–9] could yield overlapping signals with some 

PBDE congeners when monitoring ions at m/z 79 and 81 for quantitation. The determination of HBCD by GC-

HRMS in positive EI mode has demonstrated greater selectivity, as the different fragmentation allows to select 
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higher, more specific ions for quantification. However, the high fragmentation on EI sources compromises 

sensitivity, leading to limits of detection (LODs) of approximately 0.04 ng on column [10]. 

In this scenario, the availability of a softer ionization source in GC could render higher-mass precursor ions, 

more specific, avoiding the potential interferences. The new soft atmospheric pressure chemical ionization 

(APCI) source has already been satisfactorily applied for GC-amenable compounds such as pesticides, 

polycyclic aromatic hydrocarbons (PAHs), PBDEs and, very recently dioxins/furans (PCDDs/PCDFs)  [11, 12]. 

The aim of this work is to study the potential of GC coupled to a triple quadrupole mass spectrometer using 

APCI source (GC-APCI-QqQ) for the determination of total HBCD in complex matrices, such as polyurethane 

foam (PUF) disks used for passive air sampling, and marine samples (dolphin, fish, prawn, squid, and 

zooplankton) and two Standard Reference Materials (SRMs 2974a and 1954; i.e., mussel tissue and human 

milk).  

 

Materials and methods  

Chemicals and reagents  

HBCD standard (-1,2,5,6,9,10-Hexabromocyclododecane) as well as isotopically labeled HBCD (-

1,2,5,6,9,10-hexabromo[13C12]cyclododecane) was purchased from Wellington Laboratories (Guelph, ONT, 

Canada) with a purity higher than 98% as 50 ng/µL solution in toluene. 

All reagents used for the sample treatment were of trace analysis grade. Sulphuric acid (95%–97%) and silica gel 

were supplied by J.T. Baker (Deventer, The Netherlands) (for the analysis of PUF disks) and by Merck Co. 

(Darmstadt, Germany) (for the rest of samples). Basic alumina, EcoChromTM MP Alumina B – Super I was 

purchased from MP Biomedicals Germany GmbH. Sodium hydroxide was from Carlo Erba (Milan, Italy). 

Acetone, n-hexane, dichloromethane, toluene and granular anhydrous sodium sulfate were obtained from J.T. 

Baker (Deventer, The Netherlands). 

 

Samples  
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Samples analyzed in this work consisted of several PUF disks (140 mm ø, 13.5 mm thickness and approximately 

5.6 g weight) used for passive air sampling (after three months exposure) in four different countries (Mali, 

Kenya, Fiji and Uruguay), a blank (non-exposed PUF) was also analyzed.  

Extracts from two different NIST standard reference materials, SRM 2974a (mussel tissue) and SRM 1954 

(human milk); and 11 sample extracts coming from the marine field (one dolphin, four different fish species, two 

prawns, two squids and two zooplankton) previously analyzed for PBDE [13] determination, were also used in 

this work to investigate the presence of HBCD.  

 

Sample Treatment  

Analytical procedure for PUFs was based on that optimized at Laboratory of Dioxins (IDAEA, CSIC, Barcelona, 

Spain). It consisted in a Soxhlet extraction with toluene for 24 h, previously cutting the disk in several pieces and 

adding a known amount of 13C12-HBCD. Subsequent clean-up was carried out by a multilayer acid/base silica 

column eluted with n-hexane. Then, the concentrated extract was added onto a basic alumina column and HBCD 

was collected in the n-hexane:dichloromethane (80:20) fraction. 

Marine samples extraction and purification procedures are previously described in the literature [14, 15]. Briefly, 

extraction involved matrix solid-phase dispersion (MSPD) of the samples. Among 6-200 g of fresh sample 

homogenized with 4:1 (w/w) silica gel/anhydrous sodium sulfate powder, and spiked with 13C12-BDEs 47, 99, 

and 153 was ground to a fine powder, loaded onto a column, and extracted with 400 mL of 1:1 (v/v) acetone/n-

hexane mixture. For the clean-up of the extracts two multilayer columns filled with neutral silica, silica modified 

with sulfuric acid (44%, w/w), and silica modified with KOH (56%, w/w) were employed using n-hexane as 

elution solvent. When required, the final extract containing the target compounds was subjected to further 

fractionation on SupelcleanTM ENVITM-Carb SPE cartridges (Supelco, Palo Alto, USA), as described elsewhere 

[16] to separate ortho-substituted PCBs plus PBDEs from PCDD/PCDF and non-ortho-substituted PCBs. HBCD 

remains in the PBDEs fraction [17]. 

 

GC-(APCI)QqQ  
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Data were acquired using a GC system (Agilent 7890A, Palo Alto, CA, USA) equipped with an autosampler 

(Agilent 7693) and coupled to a triple quadrupole (QqQ) mass spectrometer (Xevo TQ-S, Waters Corporation, 

Manchester, UK), operating in APCI positive mode. A fused silica DB-1HT capillary column, 15 m x 0.25 mm 

i.d. and a film thickness of 0.1 μm (J&W Scientific, Folson, CA, USA) was used. The oven temperature was 

programmed as follows: 140 ºC (1 min); 20 ºC/min to 285 ºC; 40 ºC/min to 350 ºC (1 min). Pulsed splitless 

injections (100 psi) of 1 µL sample extract were carried out at 280 ºC. Helium was used as carrier gas at 4 

mL/min. To establish the Selected Reaction Monitoring (SRM) conditions, automatic dwell time (35 ms to 58 

ms) was applied in order to obtain 15 points per peak. The interface temperature was set to 350 ºC using N2 as 

auxiliary gas at 250 L/h, as make-up gas at 300 mL/min and as cone gas at 170 L/h. The APCI corona discharge 

pin was operated at 1.6 µA. The ionization process occurred within an enclosed ion volume, which enabled 

control over the protonation/charge transfer processes. TargetLynx (a module of MassLynx) was used to handle 

and process the acquired data. Final MS conditions selected to determine HBCD included a cone voltage of 20 

V, collision energy of 20 eV and the transitions 560.4129.0; 560.4157.1 and 560.4237 for native HBCD 

and 572.4169 for the labeled HBCD. 

 

Results and discussion 

Ionization and in-source fragmentation of HBCD under NICI, EI and APCI  

The typical HBCD determination by GC-MS is performed either using NICI [7–9] or EI coupled to HRMS [10, 

18]. When using NICI, the molecular ion is not observed, being the [M-HBr]- • ion the one with the highest mass 

(Fig. 1A). The fragmentation in negative mode does only permit to monitor either the ion at m/z 160 ([M-H2Br6]-

•) or the bromide ion, which is preferred due to its higher sensitivity. However, the use of these non-specific ions 

is an impediment for the use of isotopically labeled HBCD standards [19]. On the other hand, EI source 

generates a spectrum with a high fragmentation pattern for HBCD (Fig. 1B). The [M]+• ion is completely 

fragmented in the source being again non-specific ions at m/z 67 and 79 the most intense peaks of the spectrum. 

The ions with the highest mass correspond to the loss of one Br atom, followed by the subsequent losses of HBr. 

Under these conditions literature shows that the limit of detection is high (around 2 ng/g lipid weight (lw)) and 

not enough to detect HBCD in several expected positive samples [18]. Table 1 enlists the majority of attempts 
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performed so far in order to detect and quantify HBCD, indicating the systems used and the achieved 

performance in each case in terms of limit of detection (LOD) and limit of quantification (LOQ). The results 

evidence the need of an improvement of the analytical performance in samples with low HBCD concentrations 

(lower than 2 ng/g) as foods and environmental samples are expected to be low contaminated, as a result of the 

HBCD use in the past [4, 18] 

At this point APCI source was explored, revealing its softer ionization and the much lower in-source 

fragmentation of the HBCD in comparison with NICI and EI. Although [M]+• was absent in the APCI spectrum, 

the loss of one Br atom, followed by subsequent losses of HBr were observed. Nevertheless, the relative 

abundances of these ions were significantly higher to those observed in EI, being the ion corresponding to the 

loss of [H3Br4]· the base peak of the APCI spectrum (Fig. 1C). The abundant presence (50% of the base peak) of 

the ion corresponding to the loss of one single bromine atom ([M-Br]+ ) was selected for the required application. 

It was considered a good candidate as precursor ion for MS/MS experiments due to its high m/z value and 

specificity. During these experiments cone voltage values between 5 and 50 V were tested in order to select the 

optimum value pursuing a low in-source fragmentation and maximum response. Finally, 20 V was selected as 

optimum.  

 

Fragmentation of HBCD in the collision cell 

In order to study the fragmentation of HBCD in the collision cell, two ions from the isotopic pattern 

corresponding to [M-Br]+• (M+4 and M+6) were selected in the first quadrupole and fragmentation was 

performed using collision energies between 10 eV and 30 eV. A collision energy of 20 eV was selected as 

optimum for all the aforementioned transitions (Fig. 2). Accordingly, the selected transitions tested were 

560.4129.0; 560.4157.1 and 560.4237 corresponding to the fragmentation of the precursor ion [M+4-Br]+ 

and 562.6129.0, 562.6157.1 and 562.6236.9 taking [M+6-Br]+ ion as precursor. The transition 

560.4157.1 demonstrated the highest sensitivity and was hence chosen as Q transition for further experiments. 

The transition 572.4169 was selected for monitoring the 13C12-labeled standard as its fragmentation pattern 

was comparable to the native HBCD.  
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Chromatographic optimization 

Chromatographic conditions for the determination of HBCD were taken from a previous work [13] as the main 

goal of the developed method was to detect and/or quantitate the total amount of HBCD in the same sample 

extracts prepared for PBDEs determination in a single injection. Taking into account the literature regarding 

HBCD determination by GC (Table 1) two columns, a HP-5MS 30 m x 0.25 mm, 0.25 µm and a DB-1HT 15 m 

x 0.25 mm, 0.10 µm, were tested in order to determine the suitability of both stationary phases for the 

determination of HBCD. The results showed poor linearity and reproducibility for the HP-5MS column when 

compared to the DB-1HT column. An important decay of the signal with the increasing number of runs was 

observed in the HP-5MS column. This column-dependency and the fact that signal to noise (S/N) ratios were 5 

times lower when using the 5MS column confirmed the DB-1HT column as the proper one. This kind of 

comparison between columns has been previously performed but at concentration levels of ng/μL, finding that 

the DB-1HT column provided sharper signals and better separation from egg matrix peaks, making the DB-1HT 

column more suitable for HBCD analysis [20]. It is worth to mention that the film thickness was different and 

that could also influence the column performance in the case of HBCD. 

 

Analytical parameters 

In order to test the reliability of the method, repeatability of response was studied by ten repeated injections of 

HBCD standards at 1 pg/L level. The relative standard deviation was clearly lower than 10%. Linearity of the 

relative response of the HBCD (to its corresponding 13C12 isotopically labeled standard) was studied by 

analyzing standard solutions, in triplicate, in the range of 1 pg/µL–100 pg/µL. The correlation coefficient (r2) 

was higher than 0.999, with residuals lower than 2%. Sensitivity of the method can be derived from Fig. 3A (1 

pg/µL standard solution in nonane). LOD was determined to be around 100 fg injected in pulsed splitless mode. 

With the purpose of evaluating the specificity provided by the use of the selected HBCD transitions, a CS4 (50 

pg/µL) PBDEs mixture standard was injected monitoring the HBCD transitions through the whole 

chromatogram. Fig. 3B shows the result, in which only two signals appeared in the whole chromatogram; one 

“interferent” eluting 2.5 minutes later but one eluting at the same time as HBCD, showing a completely different 

q/Q ratio. The signal produced by the 50 pg/µL PBDEs mixture in the Q transition was around 1% of the signal 
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for the 1 pg/µL HBCD standard (see Fig. 3). Consequently, possible interferences coming from PBDEs which 

would led in false positives when determining HBCD are discarded and only over quantifications around 1% of 

the area of the native HBCD could appear in regular analysis, which is more than acceptable.  

Conversely, the possible interferences of HBCD in PBDEs determination were also studied, by monitoring the 

transitions of PBDEs in an injection of the most concentrated HBCD standard available (CS5, 100 pg/µL). 

Degradation of HCBD to lower brominated analogues at injection port temperatures above 240 ºC has been 

reported [21, 22]. These degradation products are an important PBDE quantitation issue when acquiring the 

bromide ion as quantitation ion. This situation is much less an issue when using the GC-APCI-QqQ method. Fig. 

4A shows that the signal generated by thermal degradation product(s) originated from 100 pg of HBCD in the 

transitions of BDE 47 is only of about 1% of the corresponding 1 pg BDE 47 signal (Fig. 4B). This would have 

practically no negative effect on the quantification of this PBDE and constitutes another advantage of the APCI 

source and its associated low fragmentation, which allows to minimize the mutual interferences among 

brominated compounds. 

 

Analysis of real samples 

The usability/suitability of this new procedure was tested against real/naturally contaminated samples by 

analyzing PUF extracts from a UNEP project having been exposed for three months in Suva (Fiji), Montevideo 

(Uruguay), Nairobi (Kenya) and Bamako (Mali). Quantification of the samples was carried out by using 

calibration curve with standard in solvent, using relative responses to internal labeled 13C12 -HBCD standard 

added as surrogate to the sample.  

Total HBCD concentrations obtained using the GC-APCI-QqQ method ranged from 190 pg/µL to 400 pg/µL (in 

the extract) which correspond to 4 ng/PUF and 8 ng/PUF, respectively. In Fig. 5A, we can observe the detection 

and identification of HBCD in one of the PUF extracts (3.68 ng/PUF) by the presence of its 4 SRM transitions at 

expected retention time and the q/Q ratios within stablished tolerances. 

Finally, the 11 marine samples and the two reference materials were re-injected into the system under optimized 

conditions for HBCD. HBCD was detected in ten out of the 13 samples analyzed. Fig. 5 shows the 

chromatograms for a fish (B) and the mussel tissue reference (C) sample, respectively. 
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Conclusions 

The use of the atmospheric pressure chemical ionization source has been proved to render better sensitivity and 

specificity than commonly used EI/CI sources, thanks to the acquisition of several transitions coming from a 

selective [M-Br]+• precursor ion and leading to specific HBCD product ions instead of the common bromide ion 

at m/z 79/81. This fact allowed to decrease the LOD for total HBCD down to 100 fg/µL, which implies a 

significant advance when compared to traditional previous methodologies, based in GC or LC coupled to 

different sources and analyzers (Table 1) resulting in a limit of detection around 100 times lower in most of the 

cases. Additional specificity has been found for the simultaneous determination of both PBDEs and HBCD, as 

the fact of monitoring different transitions for each compound instead of the common bromide atom has shown 

to minimize their mutual interferences. 

Although LC-MS/MS methods allow isomer specific determination at levels of few ppb, the developed 

methodology has demonstrated to be able to detect and quantify total concentration of HBCD in PBDE extracts 

without additional treatment or analysis. It could be effectively applied as a screening methodology to select 

positive samples to be processed by LC-MS/MS if individual isomer information is required, saving time and 

budget analysis. 
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FIGURE CAPTIONS 

Fig. 1 (A) NICI, (B) EI, and (C) APCI spectra of γ-HBCD. 

Fig. 2 ScanWave product ion spectrum at 20 eV of 560.4 (down) and 562.6 (up).  

Fig. 3 (A) GC-APCI-QqQ chromatogram for 1 pg HBCD standard. (B) GC-APCI-QqQ chromatogram for 50 pg 

PBDE standard mixture acquired with the transitions of HBCD. S/N: signal-to-noise ratio; Q: Quantification 

transition; q: qualification transition. 

Fig. 4 (A) GC-APCI-QqQ chromatogram for 1 pg PBDE standard solution. (B) GC-APCI-QqQ chromatogram 

for 100 pg of γ-HBCD acquired with the transitions of BDE 47. Q: Quantification transition; q: qualification 

transition. 

Fig. 5 (A) GC-APCI-QqQ chromatogram for a PUF extract. (B)  GC-APCI-QqQ chromatogram for a fish 

extract. (C) GC-APCI-QqQ chromatogram for a mussel tissue reference material extract. Q: Quantification 

transition; q: qualification transition. 
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Table 1. Techniques and conditions previously used for the determination of HBCD and their performance in terms of LOD and LOQ. 

  

Technique Column Gradient Ionic species and m/z LOD LOQ Reference 

GC-HRMS (EI) DB-1 (10 m × 0.28 mm × 0.1 µm) -- [M - Br]+ ;560.7289; 562.7269 -- 30 - 50 pg on column 

[10] 

LC-MS (APCI-) C18-RP (125 mm x 4 mm) methanol/water (80:20); 1 ml/min [M - H]−; 638.6; 640.6; 642.6 -- 

500 - 1000 pg on 

column a 

LC-MS/MS (ESI-) 
C30 YMC Carotenoid S-5 (4.6 x 

250 mm) 

water/methanol (20:80); to 100% 

methanol over 35 min; 0.5 mL/min 
[M-H]−→Br−;640.8 78.8 

5 - 25 pg on 

column a 
300 pg/g (ww) [17] 

LC-MS/MS (ESI-) 

NUCLEODEX β-PM (200 mm × 4 

mm, 5 µm)  water/methanol  (50:50); 500 µL/min 

[M+Cl]− →[M−H]−;676.6  

640.6 1.5 - 4.3 pg/µL 5 - 14 pg/µL  b [14] 

GC-MS (NICI) 
HP-5MS (30 m × 0.25 mm x 0.25 

µm) 

110 °C (1 min); 8 °C/min to 180 °C (1 

min); 2 °C/min to 240 °C (5 min);  2 

°C/min to 265 °C (6 min) 

Br−; 79  -- 2000 pg/g dry wt. [8] 

LC-MS/MS (ESI-) 

Symmetry C18 (2.1 mm × 150 

mm, 5 μm) preceded by C18 guard 

column (2.1 × 10 mm) 

H2O:MeOH (3:1 v/v); 0.25 mL/min; 8 

min to MeOH 100%; 17 min to MeOH 

97.5%; 3 min to initial cond (15 min). 

[M-H]− →Br−;638.7  78.9, 

638.7  80.9 
30 to 60 pg/g  110 to 200 pg/g a  [3] 

GC-MS (NICI) 
DB-5MS (30 m × 0.25 mm x 0.25 

µm) 

80°C (2 min); 25°C /min to 240°C; 

4°C/min to 315°C (50 min) 
Br−; 79, 81 50 to 100 ng/g  -- [9] 

LC-MS/MS (ESI-) 

Symmetry C18 (2.1 × 150 mm, 5 

µm) a 

water/ methanol/acetonitrile 

(60:30:10); 250 µL/min; 5 min to 

methanol/acetonitrile (50:50) (6 min) 
[M-H]− →Br−; 640.6   79 

0.5 to 5 pg on 

column 
15 to 75 pg/g (ww) [6] 

NUCLEODEX β-PM (200 mm × 4 

mm, 5 µm) b 

water/ methanol/acetonitrile (40:30:30) 

( 0.5 min); 500 µL/ min;   8 min to 

methanol/acetonitrile (30:70) (14 min) 

LC/LC-MS/MS 

(ESI-) 

Eclipse Plus-C18 RP (250 mm × 

4.6 mm, 5 μm) coupled to a 

Zorbax Eclipse XDB-C8 RP (150 

mm × 4.6 mm, 5 μm) 

MeOH (A)/ACN (B)/H2O (C); 0.5 

mL/min. A/B/C (3:87:10 ) (25 min), 1 

min to 100% B (9 min), 3 min to initial 

cond. (10 min) 

[M-H]− →Br−; 640.7   78.8 
0.4 to 0.8 pg on 

column 
1 to 2.5 pg/µL a [5] 

GC-MS (NICI) DB-5 (15 m× 0.25 mm× 0.10 µm) 
90 °C (1.5 min); 15 °C/min to 295 °C 

(15 min) 
Br−; 79, 81 -- 

100 pg/g (dry wt) 0.4 

ng/g (lw) 
[7] 

GC-HRMS (EI) DB-5 (30 m x 0.25 mm x 0.1 µm) -- 

Isotope Ratio and RT 

identification -- 2400 pg/g (lw) 
[18] 

GC-MS (EI) 
DB-5 (30 m × 0.25 mm x 0.25 µm) -- full scan 200000 pg/g -- 

[20] 
DB-1 (30 m × 0.25 mm x 0.25 µm) -- full scan 200000 pg/g -- 

a  Diastereoisomers 

b Enantiomers 
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