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LATTICE PATHS WITH GIVEN NUMBER OF TURNS AND

SEMIMODULES OVER NUMERICAL SEMIGROUPS

JULIO JOSÉ MOYANO-FERNÁNDEZ AND JAN ULICZKA

Abstract. Let Γ = 〈α, β〉 be a numerical semigroup. In this article we consider
several relations between the so-called Γ-semimodules and lattice paths from (0, α)
to (β, 0): we investigate isomorphism classes of Γ-semimodules as well as certain
subsets of the set of gaps of Γ, and finally syzygies of Γ-semimodules. In particular
we compute the number of Γ-semimodules which are isomorphic with their k-th
syzygy for some k.

1. Introduction

In our paper [4] we considered Hilbert series of graded modules over the polynomial
ring R = F[X, Y ] with deg(X) and deg(Y ) being coprime. The central result was
an arithmetic criterion for such a series to be the Hilbert series of some finitely
generated R–module of positive depth. This criterion is formulated in terms of the
numerical semigroup generated by deg(X) and deg(Y ). For reader’s convenience we
recall some basic vocabulary of this theory here.

Let Γ be a sub–semigroup of N such that the greatest common divisor of all its
elements is equal to 1. Then the set N\Γ has only finitely many elements, which are
called the gaps of Γ. Such a semigroup is said to be numerical. The crucial notion
in [4] was that of a fundamental couple: Let α, β > 0 be coprime integers and let G
denote the set of gaps of 〈α, β〉. An (α, β)–fundamental couple [I, J ] consists of two
integer sequences I = (ik)

m
k=0 and J = (jk)

m
k=0, such that

(0) i0 = 0.
(1) i1, . . . , im, j1, . . . , jm−1 ∈ G and j0, jm ≤ αβ.

(2)
ik ≡ jk mod α and ik < jk for k = 0, . . . , m;
jk ≡ ik+1 mod β and jk > ik+1 for k = 0, . . . , m− 1;
jm ≡ i0 mod β and jm ≥ i0.

(3) |ik − iℓ| ∈ G for 1 ≤ k < ℓ ≤ m.
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One of the problems considered in this article will be the counting of sets of
integers like those appearing in the first position of a fundamental couple. We coin
a name for these sets:

Definition 1.1. Let Γ be a numerical semigroup. A set {x0 = 0, x1, . . . , xn} ⊆ N is
called Γ-lean if |xi − xj | /∈ Γ for 0 ≤ i < j ≤ n.

The next two sections deal with objects related to Γ-lean sets: we begin with
isomorphism classes of Γ-semimodules. In section 3 we consider certain lattice paths;
from this section on, Γ is restricted to be generated by two elements. In the last
sections we turn our attention to the second position of a fundamental couple: we
identify the sequences J appearing there with so-called syzygies of Γ-semimodules
and investigate their relation with lattice paths. The process of taking syzygies
can be iterated — our final result allows to compute the number of semimodules ∆
whose k-th syzygy is isomorphic with ∆ for some k.

2. Generators of Γ-semimodules

Let Γ be a numerical semigroup. A Γ-semimodule ∆ is a non-empty subset of N
such that ∆ + Γ ⊆ ∆. A system of generators of ∆ is a subset E of ∆ with

⋃

x∈E

(x+ Γ) = ∆.

It is called minimal if no proper subset of E generates ∆. Note that, since ∆ \ Γ is
finite, every Γ-semimodule is finitely generated.

Lemma 2.1. Every Γ-semimodule ∆ has a unique minimal system of generators.

Proof. Inductively we construct a sequence (xi) of elements of ∆ starting with x1 =
min∆ such that any system of generators has to contain this sequence. If x1, . . . , xn

are already constructed but do not generate ∆ we set xn+1 = min∆ \ ∪n
i=1(xi + Γ).

After finitely many steps we arrive at a system of generators x1, . . . , xr, and by
construction it is clear that this system is minimal and that any system of generators
must contain x1, . . . , xr. �

Lemma 2.2. Let x1, . . . , xr be the minimal system of generators of a Γ-semimodule.
Then |xi − xj| is a gap of Γ for all i 6= j. Conversely, any subset {x1, . . . , xr} of N
with this property minimally generates a Γ-semimodule.

Proof. We may assume xj > xi for j > i. Then, by minimality, xj − xi /∈ Γ for all
j > i. The second assertion is clear since xi /∈ ∪j 6=i(xj + Γ). �

Two Γ-semimodules ∆,∆′ are called isomorphic if there is an integer n such that
x 7→ x+ n is a bijection from ∆ to ∆′. For every Γ-semimodule ∆ there is a unique
semimodule ∆′ ∼= ∆ containing 0; such a Γ-semimodule is called normalized.
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The semimodule ∆◦ := {x−min∆ | x ∈ ∆} is called the normalization of ∆. It
is the unique semimodule isomorphic to ∆ and containing 0.

Corollary 2.3. The minimal system of generators of a normalized Γ-semimodule
is Γ-lean, and conversely, every Γ-lean set of N minimally generates a normalized
Γ-semimodule. Hence there is a bijection between the set of isomorphism classes of
Γ-semimodules and the set of Γ-lean sets of N.

3. Lattice paths and 〈α, β〉-lean sets

From now on we only consider numerical semigroups with two generators α < β.
In this case there is a connection between Γ-lean sets and certain lattice paths which
allows to deduce a formula for the number of 〈α, β〉-lean sets.

Lemma 3.1 ([7], Lemma 1, resp. [4], Corollary 3.5). (1) Let e ∈ Z. Then e /∈ 〈α, β〉
if and only if there exist k, ℓ ∈ N>0 such that e = αβ − kα− ℓβ.
(2) Any integer n > 0 has a unique presentation n = pαβ − aα − bβ with integers
p > 0, 0 ≤ a < β and 0 ≤ b < α.

This result yields a map G → N
2, αβ − aα − bβ 7→ (a, b) which identifies a gap

with a lattice point. Since αβ − aα− bβ > 0 the point lies inside the triangle with
corners (0, 0), (β, 0), (0, α).

Lemma 3.2 ([4], Lemma 3.19). Let i1 = αβ−a1α−b1β, i2 = αβ−a2α−b2β be gaps
of 〈α, β〉. Then the difference |i1 − i2| is a gap if and only if (a2 − a1)(b2 − b1) < 0.

Corollary 3.3. Let E := {0, x1, . . . , xm} ⊆ N with gaps xi = αβ − aiα − biβ of
〈α, β〉, i = 1, . . . , m such that a1 < a2 < · · · < am, then E is 〈α, β〉-lean if and only
if b1 > b2 > · · · > bm.

Therefore an 〈α, β〉-lean set yields a lattice path with steps downwards and to the
right from (0, α) to (β, 0) not crossing the diagonal, where the points identified with
the gaps mark the turns from x-direction to y-direction. In the sequel those turns
will be called ES-turns for short.

Lattice path for the 〈5, 7〉-lean set {0, 9, 6, 8}.
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(Note that in the first component I = (ik)
m
k=0 of a fundamental couple the num-

bering of elements is that of Corollary 3.3 reversed, see [4, Corollary 3.21 a)]. Hence
in the path associated to I the ES-turns are numbered from right to left. One could
avoid this inversion by considering paths from (β, 0) to (α, 0) or by using a different
orientation of the diagram, but we prefer our version for typographical reasons.)

Conversely, for every lattice path from (0, α) to (β, 0) not crossing the diagonal
the points of the ES-turns can be identified with the gaps in an 〈α, β〉-lean set:

Lemma 3.4. Let α, β be coprime positive integers. Then there is a bijection between
the set of 〈α, β〉-lean sets and the set of lattice paths from (0, α) to (β, 0) not crossing
the diagonal.

Therefore counting of 〈α, β〉-lean sets is equivalent to counting of such lattice
paths. The latter was considered by Bizley in [2]. The main idea used there even
allows to count the paths with a certain number of ES-turns.

The number of all lattice paths with r ES-turns from (0, α) to (β, 0) is easily
computed: The r turning points have x-coordinates in the range {1, . . . , β− 1} and
also y-coordinates in the range {1, . . . , α − 1}. Since the sequence of coordinates
has to be increasing resp. decreasing there are

(

β−1
r

)(

α−1
r

)

lattice paths. We have
to determine how many of these paths stay below the diagonal. To this end we use
the concept of a cyclic permutation of a path.

A lattice path with r ES-turns can also be described by a 2 × (r + 1)-matrix
where the i-th column contains the numbers of steps downwards and to the right
the path takes between the (i − 1)-th and the i-th turning points (where the 0-th
and (r + 1)-th points are to be understood as (0, α) resp. (β, 0)). For the path in

the example above we get the matrix

(

2 1 1 1
1 2 1 3

)

.

A cyclic permutation of the path is a path belonging to the matrix with cyclically

permuted columns. The permuted matrix

(

1 1 2 1
1 3 1 2

)

yields the path
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One can also imagine a cyclic permutation in a different way. We extend the path
with turning points Pi = (xi, yi) beyond (β, 0) with points Qi = (xi + β, yi − α),
thus amending a second copy of the original path. The cyclic permutations are the
paths from Pi to Qi with turning points Pi+1, . . . , Pr, (β, 0), Q1, . . . , Qi−1:

Pi

Qi

A lattice path with r turning points admits r+1 cyclic permutations. As we will
show now there is always exactly one permutation staying below the diagonal: Again
we consider the doubled path as described above. Let g0 denote the line through
P0 := (0, α) and Q0 := (β, 0) and gi the line through Pi and Qi for i = 1, . . . , r.
Note that all these lines are parallel and that, since α and β are coprime, there is no
turning point between Pi and Qi lying on gi. Hence there is one line gj, j ∈ {0, . . . , r}
namely the one with the greatest distance from the origin, such that the path stays
below this line.

g0

gj
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Since the line gi yields the diagonal of the i-th cyclic permutation of the original
path, indeed exactly one of the permuted paths stays below the diagonal; hence we
have proven:

Proposition 3.5. Let α and β be two coprime positive integers.

1. For every lattice path from (0, α) to (β, 0) there is exactly one cyclic permu-
tation staying below the diagonal.

2. The number of 〈α, β〉-lean sets with r gaps equals the number of lattice paths
with r ES-turns from (0, α) to (β, 0) staying below the diagonal, and this
number is given by

1

r + 1

(

α− 1

r

)(

β − 1

r

)

.

In combination with Corollary 2.3 and Lemma 3.4 this result yields the following
theorem:

Theorem 3.6. Let α, β, r ∈ N with gcd(α, β) = 1. Then the following numbers

(1) The number of isomorphism classes of 〈α, β〉-semimodules minimally gener-
ated by r + 1 elements.

(2) The number of 〈α, β〉-lean sets with r gaps.
(3) The number of lattice paths with r ES-turns from (0, α) to (β, 0) staying

below the diagonal.

equal

Lα,β(r) :=
1

r + 1

(

α− 1

r

)(

β − 1

r

)

.

Using standard techniques one can also deduce a formula for
∑

r≥0 Lα,β(r), recov-
ering results of Bizley, resp. Beauville, Fantechi–Göttsche–van Straten, and Piont-
kowski:

∑

r≥0

Lα,β(r) =
∑

r≥0

1

r + 1

(

α− 1

r

)(

β − 1

r

)

=
∑

r≥0

1

r + 1

(

α− 1

r

)

r + 1

β

(

β

r + 1

)

= . . .
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. . . =
1

β

∑

r≥0

(

α− 1

r

)(

β

r + 1

)

=
1

β

∑

r≥1

(

α− 1

r − 1

)(

β

r

)

=
1

β

∑

r≥0

(

α− 1

r − 1

)(

β

r

)

=
1

β

∑

r≥0

(

α− 1

α− r

)(

β

r

)

.

The Vandermonde convolution yields

1

β

∑

r≥0

(

α− 1

α− r

)(

β

r

)

=
1

β

(

α+ β − 1

α

)

=
1

β

(α+ β − 1)!

α! · (β − 1)!
=

1

α + β

(α + β)!

α! · β!

=
1

α + β

(

α + β

α

)

,

which implies the following result.

Theorem 3.7. Let α, β ∈ N be coprime. Then the following numbers

(1) The number of isomorphism classes of 〈α, β〉-semimodules (cf. [1], [3], [5]).
(2) The number of 〈α, β〉-lean sets.
(3) The number of lattice paths from (0, α) to (β, 0) staying below the diagonal

(cf. [2]).

equal

Lα,β :=
∑

r≥0

Lα,β(r) =
1

α + β

(

α + β

α

)

.

Remark 3.8. In particular Lα,β gives the number of (α, β)-fundamental couples
and hence the number of inequalities appearing in condition (⋆) of Theorem 3.13 in
[4], also see [4, Remark 3.12].

Remark 3.9. In the special case β = α+ 1 the numbers Lα,β(r) and Lα,β coincide
with certain combinatorial numbers. We get

Lα,α+1(r) =
1

α

(

α

r

)(

α

r + 1

)

= N(α, r + 1),

the so-called Narayana number (cf. [6]). Moreover, Lα,α+1 agrees with the Catalan
number Cα since

Lα,α+1 =
∑

r≥0

Lα,α+1(r) =
∑

r≥0

N(α, r + 1) = Cα,

see [8, Exercise 6.36].
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4. Syzygies of 〈α, β〉-semimodules and lattice paths

We consider now the sequences appearing in the second position of a fundamental
couple. Let [I, J ] be a fundamental couple with sequences I = [i0 = 0, . . . , in] and
J = [j0, . . . , jn]. By definition, the elements j1, . . . , jn−1 are gaps of 〈α, β〉 such that

jk ≡ ik mod α and jk ≡ ik+1 mod β.

An inspection of the lattice path belonging to I shows that these gaps j1, . . . , jn−1

correspond to the inner SE-turning points of the path. By extension of the labeling
beyond the axis we can even identify j0 and jn with the remaining SE-turns. For
illustration see again the example of the previous section:

23 18 13 8 3

16 11 6 1

9 4

2

(35) (30) (25) (20) (15) (10) (5) (0)

(28)

(21)

(14)

(7)

(0)

I = [0, 8, 6, 9] and J = [15, 13, 16, 14].

Next we explain the meaning of J in terms of 〈α, β〉-semimodules: Every 〈α, β〉-
semimodule ∆ yields another 〈α, β〉-semimodule Syz(∆).

Definition 4.1. Let I be an 〈α, β〉-lean set, and let ∆ be the 〈α, β〉-semimodule
generated by I. The syzygy of ∆ is the 〈α, β〉-semimodule

Syz(∆) :=
⋃

i,i′∈I
i 6=i′

((

i+ 〈α, β〉
)

∩
(

i′ + 〈α, β〉
))

.

The semimodule Syz(∆) consists of those elements in ∆ which admit more than
one presentation of the form i+ x with i ∈ I, x ∈ 〈α, β〉. The name syzygy may be
justified by considering an analogue of ∆ in the setting of commutative algebra:
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Let R = F[tα, tβ ], then ∆ can be identified with the R-submodule M of F[t]
generated by {ti | i ∈ I}. Let

⊕

i∈I

R(−i)
ϕ

−→ M

(fi) 7→
∑

i

fit
i

be the first step in a graded minimal free resolution of M . By [5, Lemma 2.3] the
kernel of ϕ is generated by (homogeneous) elements vi,i′ of the form

(0, . . . , tγi, 0, . . . , 0,−tγi′ , 0, . . . , 0),

with the non-zero entries in positions i, i′ ∈ I. Since

deg(vi,i′) = γi + i = γi′ + i′ ∈ (i+ 〈α, β〉) ∩ (i′ + 〈α, β〉)

the module kerϕ ist non-zero exactly in the degrees contained in Syz(∆).

The connection between fundamental couples and syzygies is described in the
following theorem:

Theorem 4.2. Let [I, J ] be an 〈α, β〉-fundamental couple and let ∆ be the 〈α, β〉-
semimodule generated by the elements of I. Then

Syz(∆) =
⋃

0≤k<m≤n

(

(ik + 〈α, β〉) ∩ (im + 〈α, β〉)
)

=

n
⋃

k=0

(jk + 〈α, β〉).

Proof. By definition of a fundamental couple we have jk = ik + rα = ik+1 + sβ with
some r, s ∈ N, hence the inclusion ⊇ is clear. In order to show the other inclusion, we
consider ik+ 〈α, β〉∩ im+ 〈α, β〉. For every γm ∈ 〈α, β〉 we have im+γm ∈ ik+ 〈α, β〉
if and only if im − ik + γm ∈ 〈α, β〉. As mentioned in the previous section, ik and im
can be written in the form

ik = αβ − akα− bkβ, im = αβ − amα− bmβ;

by Lemma 3.2 we may assume ak > am and bk < bm. Since

im − ik = (ak − am)α+ (bk − bm)α = αβ − (β − ak + am)α− (bm − bk)β

the characterization of Z \ 〈α, β〉 in Lemma 3.1 implies

{γ ∈ 〈α, β〉 | γ+im−ik ∈ 〈α, β〉} = ((β − ak + am)α+ 〈α, β〉)∪((bm − bk)β + 〈α, β〉) .

This means

(im + 〈α, β〉) ∩ (ik + 〈α, β〉)

= (im + (β − ak + am)α+ 〈α, β〉) ∪ (im + (bm − bk)β + 〈α, β〉) .
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Moreover,

im + (β − ak + am)α = αβ − akα− bmβ + αβ

= (β − a1)α + (a1 − ak)α + (α− bm)β

= j0 + (a1 − ak)α+ (α− bm)β ∈ j0 + 〈α, β〉,

and on the other hand

im + (bm − bk)β = αβ − amα− bmβ + (bm − bk)β

= αβ − amα− bkβ

= αβ − ak+1α− bkβ + (ak+1 − am)α

= jk + (ak+1 − am)α ∈ jk + 〈α, β〉,

hence im + 〈α, β〉 ∩ ik + 〈α, β〉 ⊆ j0 + 〈α, β〉 ∪ jk + 〈α, β〉. �

Corollary 4.3. Let [I, J ] be an 〈α, β〉-fundamental couple and let ∆ be the 〈α, β〉-
semimodule generated by the elements of I. We have

Syz(∆) =
n−1
⋃

k=0

(

(ik + 〈α, β〉) ∩ (ik+1 + 〈α, β〉)
)

∪
(

(i0 + 〈α, β〉) ∩ (in + 〈α, β〉)
)

.

Proof. This follows immediately from jk ∈ ik+〈α, β〉∩ik+1+〈α, β〉 for k = 1, . . . , n−1
resp. jn ∈ i0 + 〈α, β〉 ∩ in + 〈α, β〉 and the previous theorem. �

5. Orbits

Let [I, J ] a fundamental couple and let
(

y0 y1 . . . yn
x0 x1 . . . xn

)

be the matrix describing the path for the semimodule ∆ generated by I. We con-
sider a second lattice path from (0, bn) (the point associated to jn) to (β, bn − α)
with ES-turns in the SE-turning points of the first path (those points representing
jn−1, . . . , j0). The matrix for this path is given by

(

y1 y2 . . . yn y0
x0 x1 . . . xn−1 xn

)

.

It is easily seen that—up to a cyclic permutation of columns—this matrix also
describes the path belonging to the normalization ∆◦ of ∆: In terms of lattice paths
normalizing ∆ means translation of the path such that the ES-turn belonging to
min J is moved to (0, α) and the part of the path left of this point will be appended
behind the former end point.

The procedure of building a syzygy can be iterated; we set

Syz(k)(∆) := Syz(Syz(k−1)(∆)), k ≥ 2.
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From the matrix description of the path for Syz(∆) it is clear that Syz(n+1)(∆) ∼= ∆.
Now we consider under which conditions even lower syzygies of ∆ are isomorphic
with ∆.

Definition 5.1. A sequence ∆1, . . . ,∆ℓ of distinct 〈α, β〉-semimodules such that
∆k = Syz(∆k−1)

◦ for k = 2, . . . , ℓ, and ∆1 = Syz(∆ℓ)
◦ is called an orbit of length ℓ or,

for short, an ℓ-orbit (of 〈α, β〉-semimodules). The 1-orbits, i. e. 〈α, β〉-semimodules
∆ with ∆ ∼= Syz(∆), are called 〈α, β〉-fixed points.

We want to count the number of ℓ-orbits of 〈α, β〉-semimodules with n generators.

To this end we investigate the structure of a semimodule ∆ with Syz(ℓ)(∆) ∼= ∆; we
may restrict our attention to the case of ℓ dividing n, since the length of an orbit
can be viewed as the order of an element in the cyclic group of order n. Let

(

y0 y1 . . . yn−1

x0 x1 . . . xn−1

)

be the matrix for the path belonging to ∆. Then, as mentioned above, this matrix
and the matrix

(

yℓ yℓ+1 . . . yℓ−2 yℓ−1

x0 x1 . . . xn−1 xn

)

,

have to be equal up to cyclic permutation of columns. This means that there exists
a k ∈ {1, . . . , n− 1} such that

(

yk+ℓ yk+ℓ+1 . . .
xk xk+1 . . .

)

=

(

y0 y1 . . .
x0 x1 . . .

)

,

we may assume that k is minimal with this property. Since
(

yk+2ℓ yk+2ℓ+1 . . .
xk xk+1 . . .

)

=

(

yℓ yℓ+1 . . .
x0 x1 . . .

)

we have
(

y2k+2ℓ y2k+2ℓ+1 . . .
x2k x2k+1 . . .

)

=

(

yk+ℓ yk+ℓ+1 . . .
xk xk+1 . . .

)

=

(

y0 y1 . . .
x0 x1 . . .

)

.

By induction we get xj = xrk+j for j ∈ {0, . . . k − 1}, r ≥ 0. Hence the bottom row
of the matrix is of the form

[x0 . . . xk−1] [x0 . . . xk−1] . . . [x0 . . . xk−1].

On the other hand we can find a minimal m ∈ {2, . . . , n} such that
(

ym−ℓ ym−ℓ+1 . . .
xm xm+1 . . .

)

=

(

y0 y1 . . .
x0 x1 . . .

)

,

and with the same reasoning as above, the top row of the matrix is of the form

[y0 . . . ym−1] [y0 . . . ym−1] . . . [y0 . . . ym−1].
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Therefore the matrix for ∆ looks like
(

[y0 . . . . . . ym−1] . . . [y0 . . . . . . ym−1]
[x0 . . . xk−1] . . . [x0 . . . xk−1]

)

with m′ blocks [y0 . . . ym−1] and k′ blocks [x0 . . . xk−1]. Since

m′ ·

m−1
∑

j=0

yj = α and k′ ·

k−1
∑

j=0

xj = β, (5.1)

the numbers m′ and k′ divide α resp. β, so in particular they are coprime. By
assumption, ℓ is the least positive integer p such that the matrices

(

y0 y1 . . .
x0 x1 . . .

)

and

(

yp yp+1 . . .
x0 x1 . . .

)

contain the same columns. This is the case if and only if there are r, s ∈ N with
p + sm = rk. This implies that p has to be contained in the ideal generated by
k and m. Hence, by minimality of ℓ, we get ℓ = gcd(k,m), and so we may write

k = k̃ℓ and m = m̃ℓ. From kk′ = n = mm′ we get k̃k′ = m̃m′ = n
ℓ
; by gcd(k̃, m̃) = 1

this implies k̃ = m′ and m̃ = k′, and by k′ | α and m′ | β moreover k = gcd(β, n
ℓ
)

and m = gcd(α, n
ℓ
), in particular n

ℓ
| αβ. By now we have shown the following

proposition:

Proposition 5.2. Let ∆ be an 〈α, β〉-semimodule with n generators. If ∆ is an
element of an ℓ-orbit, then ℓ |n and n

ℓ
|αβ. The corresponding matrix is of the form

(

[y0 . . . ym−1] . . . [y0 . . . ym−1]
[x0 . . . . . . xk−1] . . . [x0 . . . . . . xk−1]

)

, (5.2)

where k = ℓ · gcd(α, n
ℓ
) and m = ℓ · gcd(β, n

ℓ
).

In fact the structure described in the previous proposition is shared by all 〈α, β〉-

semimodules ∆ with n generators and Syz(ℓ)(∆) ∼= ∆—not only by elements of
ℓ-orbits:

Lemma 5.3. Let ∆ be an 〈α, β〉-semimodule with n generators, let ℓ ∈ N be a
divisor of n. If Syz(ℓ)(∆) ∼= ∆ then the matrix for ∆ can be written in the form
mentioned in Proposition 5.2.

Proof. Let d = min{t ∈ N | Syz(t)(∆) ∼= ∆}. Then d | ℓ, and we only have to
consider the case d < ℓ. By Proposition 5.2 the matrix for ∆ can be written in the
form

(

[y0 . . . ymd−1] . . . [y0 . . . ymd−1]
[x0 . . . . . . xkd−1] . . . [x0 . . . . . . xkd−1]

)

with k′
d = gcd(β, n

d
) blocks [x0 . . . xkd−1] and m′

d = gcd(α, n
d
) blocks [y0 . . . ymd−1].
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We want to obtain a matrix with k′
ℓ = gcd(β, n

ℓ
) blocks [x0 . . . xkℓ−1] and m′

ℓ =
gcd(α, n

ℓ
) blocks [y0 . . . ymℓ−1]. Since k′

ℓ | k′
d and m′

ℓ | m′
d, this is easily done by

concatenating
k′
d

k′
ℓ

x-blocks resp.
m′

d

m′

ℓ

y-blocks. �

Corollary 5.4. Let ℓ ∈ N be a divisor of n < α. Then there exists an ℓ-orbit of
〈α, β〉-semimodules with n generators.

Proof. Let k, k′, m,m′ be as in the proof of Prop. 5.2. Then
∑

yi =
α
m′

= mα
n
> m

resp.
∑

xi > k. Hence r := α
m′

−m+1 > 1 and s := β

k′
−k+1 > 1, so we may choose

the matrix (5.2) to be built of blocks [y0 . . .] = [1 1 . . . 1 r], [x0 . . .] = [1 1 . . . 1 s].
Since these blocks cannot be split into smaller ones, the corresponding semimodule
cannot be part of a d-orbit with d < ℓ. �

Lemma 5.3 allows to count 〈α, β〉-semimodules ∆ with Syz(ℓ)(∆) ∼= ∆ and n
generators. Using the same notation as in the deduction of Proposition 5.2, we find
the following: By (5.1) the steps in the y-block sum up to α

m′
, therefore the partial

sums
∑r

j=0 yj for r = 0, . . . , m − 2 (these are the y-coordinates of the first m − 1

ES-turns in the corresponding path) have to be chosen in the range 1, . . . , α
m′

− 1.

Hence there are
( α

m′
−1

m−1

)

different y-blocks. Similarly there are
( β

k′
−1

k−1

)

different x-

blocks. Any combination of an x- and a y-block yields a matrix of the form (5.2),

and so there are
( α

m′
−1

m−1

)( β

k′
−1

k−1

)

of them. But, as in the counting of lattice paths in
section 3, only one of the n cyclic permutations of the matrix is admissible, hence
we have to divide by n:

Theorem 5.5. There are

1

n

( α
gcd(n

ℓ
,α)

− 1

ℓ · gcd(n
ℓ
, β)− 1

)( β

gcd(n
ℓ
,β)

− 1

ℓ · gcd(n
ℓ
, α)− 1

)

(5.3)

〈α, β〉-semimodules ∆ with Syz(ℓ)(∆) ∼= ∆ generated by n elements.

In particular we get a formula for the number of 〈α, β〉-fixed points:

Corollary 5.6. For any integer n ≤ α with n | αβ there are

1

n

( α
gcd(n,α)

− 1

gcd(n, β)− 1

)( β

gcd(n,β)
− 1

gcd(n, α)− 1

)

(5.4)

〈α, β〉-fixed points with n generators.

Remark 5.7.

(1) In the case of n = ℓ the number provided by Theorem 5.5 agrees with that
of all 〈α, β〉-semimodules with n generators (Thm. 3.6), in accordance to the

fact that Syz(n)(∆) ∼= ∆ for all these semimodules.
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(2) For n = α the formula (5.4) yields 1
α

(

β−1
α−1

)

, which equals Lα,β(α−1). Hence all
〈α, β〉-semimodules with maximal number of generators are fixed points—in
this case there are only entries “1” in the top row of the matrix. Note that
in the case of α and β being prime numbers there are no other fixed points.

One has to keep in mind that formula (5.3) does not only count the elements
with n generators in the ℓ-orbits, but all semimodules with n generators such that
Syz(ℓ)(∆) ∼= ∆, including those with Syz(d)(∆) ∼= ∆ and d < ℓ, in particular the
fixed points. However, it is possible to compute the number of ℓ-orbits using the
inclusion-exclusion principle, see the next and closing example.

Example 5.8. Let 〈α, β〉 = 〈15, 16〉. We want to compute how many orbits con-
sisting of semimodules with 12 generators exist. Since 12 divides 15 · 16 there are
ℓ-orbits for each divisor ℓ of 12. Denote the set of elements of those orbits by Orbℓ

and the set of those semimodules ∆ with n generators and Syz(ℓ)(∆) ∼= ∆ by Aℓ.
By Theorem 5.5 we get

|A1| = 1, |A2| = 7, |A3| = 91, |A4| = 455, |A6| = 637, |A12| = 41405.

We have Orb1 = A1, and one easily checks that

Orb2 = A2 \ A1

Orb3 = A3 \ A1

Orb4 = A4 \ A2

Orb6 = A6 \ (A2 ∪A3)

Orb12 = A12 \ ∪i=1,2,3,4,6Orbi.

Since A2 ∩A3 = A1 we get

|Orb1| = 1

|Orb2| = |A2| − |A1| = 6

|Orb3| = |A3| − |A1| = 90

|Orb4| = |A4| − |A2| = 448

|Orb6| = |A6 \ (A2 ∪A3)| = |A6| − |A2| − |A3|+ |A1| = 540

|Orb12| = 41405− 540− 448− 90− 6− 1 = 40320,

and thus the following numbers of ℓ-orbits:

ℓ 1 2 3 4 6 12
1
ℓ
|Orbℓ| 1 3 30 112 90 3360

Concluding the discussion of this example we determine the single fixed point. By
Proposition 5.2 the rows of the corresponding matrix have to consist of three blocks
[y0, y1, y2, y3] resp. four blocks [x0, x1, x2]. Since the entries in those blocks sum up
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to 15
3

= 5 resp. 16
4

= 4 both blocks have to contain entries “1” and a single entry
“2” i.e. up to cyclic permutation the matrix of the fixed point looks like

(

1 1 1 2 1 1 1 2 1 1 1 2
1 1 2 1 1 2 1 1 2 1 1 2

)

.

By considering the corresponding lattice path one can deduce that the admissible
permutation of the path is described by

(

2 1 1 1 2 1 1 1 2 1 1 1
1 1 2 1 1 2 1 1 2 1 1 2

)

,

and the minimal set of generators of the 〈15, 16〉-semimodule ∆ belonging to this
path is given by I = {0, 14, 13, 12, 10, 9, 8, 22, 5, 4, 18, 17}; the first syzygy of ∆ is
generated by J = {30, 29, 28, 42, 25, 24, 38, 37, 20, 34, 33, 32}.
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