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We introduce fuzzy norm-preserving maps, which generalize the concept of fuzzy isometry. Based on the ideas from Vogt, 1973,
and Väisälä, 2003, we provide the following generalized version of the Mazur-Ulam theorem in the fuzzy context: let𝑋, 𝑌 be fuzzy
normed spaces and let 𝑓 : 𝑋 → 𝑌 be a fuzzy norm-preserving surjection satisfying 𝑓(0) = 0. Then 𝑓 is additive.

1. Introduction

Studies on fuzzy normed spaces are relatively recent in the
field of fuzzy functional analysis. It was Katsaras who in 1984
[1], while studying topological vector spaces, was the first to
introduce the idea of fuzzy normon a linear space. Eight years
later, Felbin [2] offered an alternative definition. With this
definition, the induced fuzzy metric is of Kaleva and Seikkala
type [3]. In 1994, Cheng and Mordeson [4] defined another
type of fuzzy norm on a linear space whose associated fuzzy
metric is of Kramosil and Michalek type [5]. Finally, in [6]
(see also [7]), Bag and Samanta redefined the concept of fuzzy
norm given in [4] as follows.

Definition 1. Let𝑋 be a real linear space. A function𝑁 : 𝑋 ×

R → [0, 1] is said to be a fuzzy norm on𝑋 if, for all 𝑥, 𝑦 ∈ 𝑋

and all 𝑡, 𝑠, 𝑘 ∈ R, it satisfies the following:

(N1) 𝑁(𝑥, 𝑡) = 0 for 𝑡 ≤ 0;

(N2) 𝑥 = 0 if and only if𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0;

(N3) 𝑁(𝑘𝑥, 𝑡) = 𝑁(𝑥, 𝑡/|𝑘|) if 𝑘 ̸= 0;

(N4) 𝑁(𝑥 + 𝑦, 𝑡 + 𝑠) ≥ min{𝑁(𝑥, 𝑡),𝑁(𝑦, 𝑠)};

(N5) lim
𝑡→∞

𝑁(𝑥, 𝑡) = 1.

The pair (𝑋,𝑁) is called a fuzzy normed space.

We point out that classical normed spaces are strictly
included in the class of fuzzy normed spaces (see [6]) and that
(N2) and (N4) imply that, for a fixed 𝑥 ∈ 𝑋, the function
𝑁(𝑥, ⋅) is nondecreasing. It is a well-known fact that every
fuzzy norm on a real linear space 𝑋 induces a topology on
𝑋 defined as follows: a subbase for the neighborhood system
at a point 𝑥 ∈ 𝑋 consists of the sets

𝐵
𝑁
(𝑥, 𝜀, 𝑡) = {𝑦 ∈ 𝑋 : 𝑁 (𝑥 − 𝑦, 𝑡) > 1 − 𝜀} (1)

for all 0 < 𝜀 < 1 and 𝑡 > 0. It is straightforward to verify
that the filter of neighborhoods of the origin generated by the
family {𝐵

𝑁
(0, 𝜀, 𝑡) : 0 < 𝜀 < 1, 𝑡 > 0} satisfies the properties

which make (𝑋,𝑁) a Hausdorff topological vector space.
The theory of isometric mappings on classical normed

spaces has its roots in the seminal paper by Mazur and
Ulam ([8]; see also [9]), who proved that every bijective
isometry between two real normed spaces is affine. It is
known that the surjective assumption is essential in this result
and that it is not true for complex normed spaces.TheMazur-
Ulam theorem has been extended in many directions. For
example, Baker [10] proved that the result remains true if
we consider an (not necessarily onto) isometry between a
real normed space and a strictly convex real normed space.
Another direction was provided by Vogt [11], who replaced
isometries by the more general notion of equality of distance
preserving maps (see also [12]).
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In this paper, following the ideas of Vogt, we introduce a
generalization of the concept of fuzzy isometry as follows.

Definition 2. Let (𝑋,𝑁) and (𝑌,𝑁

) be two fuzzy normed

spaces. One says that 𝑓 : 𝑋 → 𝑌 is a fuzzy norm-preserving
mapping if given 𝑥, 𝑦, 𝑥, 𝑦 ∈ 𝑋, then, for all 𝑡 > 0,

𝑁(𝑥 − 𝑦, 𝑡) = 𝑁 (𝑥

− 𝑦

, 𝑡) ⇒ 𝑁


(𝑓 (𝑥) − 𝑓 (𝑦) , 𝑡)

= 𝑁

(𝑓 (𝑥


) − 𝑓 (𝑦


) , 𝑡) .

(2)

Let us recall here the definition of a fuzzy isometry.

Definition 3. Let (𝑋,𝑁) and (𝑌,𝑁

) be two fuzzy normed

spaces. It is said that 𝑓 : 𝑋 → 𝑌 is a fuzzy isometry if
𝑁

(𝑓(𝑥) − 𝑓(𝑦), 𝑡) = 𝑁(𝑥 − 𝑦, 𝑡), for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0.
We provide the following generalized version of the

Mazur-Ulam theorem in the fuzzy context: let 𝑋, 𝑌 be fuzzy
normed spaces and let 𝑓 : 𝑋 → 𝑌 be a fuzzy norm-
preserving surjection satisfying 𝑓(0) = 0. Then, 𝑓 is additive.
As a corollary, we deduce that if such an𝑓 is a fuzzy isometry,
then 𝑓 is affine.

2. The Results

Let (𝑋,𝑁) be a fuzzy normed space. Fix 𝑐 ∈ 𝑋 and define a
function 𝜙

𝑐
: 𝑋 → 𝑋 as 𝜙

𝑐
(𝑥) := 2𝑐 − 𝑥. It is apparent that

𝜙
𝑐
is bijective; indeed, 𝜙

𝑐
∘ 𝜙
𝑐
= 𝐼𝑑, where 𝐼𝑑 stands for the

identity map on𝑋. Furthermore, 𝜙
𝑐
is a fuzzy isometry since

𝑁(𝜙
𝑐
(𝑥) − 𝜙

𝑐
(𝑦), 𝑡) = 𝑁(2𝑐 − 𝑥 − 2𝑐 + 𝑦, 𝑡) = 𝑁(𝑥 − 𝑦, 𝑡), for

all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0.
Let 𝐿(𝑐,𝑁) := {𝑥 ∈ 𝑋 : 𝑁(𝑥, 𝑡) = 𝑁(2𝑐 − 𝑥, 𝑡) ≥

𝑁(𝑐, 𝑡/2) for all 𝑡 > 0}. It is clear that 𝑐 ∈ 𝐿(𝑐,𝑁) ̸= 0 and
that 𝜙

𝑐
(𝐿(𝑐,𝑁)) ⊆ 𝐿(𝑐,𝑁).

Lemma 4. Every fuzzy isometry from 𝐿(𝑐,𝑁) onto 𝐿(𝑐,𝑁)

fixes 𝑐.

Proof. Let 𝐼 := {𝑔 : 𝐿(𝑐,𝑁) → 𝐿(𝑐,𝑁) :

𝑔 is an onto fuzzy isometry}. This is a nonempty set since
the identity map belongs to it. Fix 𝑡 > 0 and let us define,
for each 𝑖 = 1, 2, 3, . . .,

𝜆
𝑡

𝑖
:= inf {𝑁(𝑔 (𝑐) − 𝑐,

𝑡

𝑖
) : 𝑔 ∈ 𝐼} . (3)

If 𝑔 ∈ 𝐼, then we define 𝑔 := 𝑔
−1
∘ 𝜙
𝑐
∘ 𝑔, which is in 𝐼. Then

𝑁(𝑔

(𝑐) − 𝑐, 𝑡) = 𝑁 ((𝑔

−1
∘ 𝜙
𝑐
∘ 𝑔) (𝑐) − 𝑐, 𝑡)

= 𝑁 (𝜙
𝑐
(𝑔 (𝑐)) − 𝑔 (𝑐) , 𝑡)

= 𝑁 (2 (𝑔 (𝑐) − 𝑐) , 𝑡)

= 𝑁(𝑔 (𝑐) − 𝑐,
𝑡

2
) .

(4)

Consequently,𝑁(𝑔(𝑐) − 𝑐, 𝑡/2) ≥ 𝜆
𝑡

1
.

Moreover, for all 𝑔 ∈ 𝐼, we have

𝑁(𝑔 (𝑐) − 𝑐, 𝑡) ≥ 𝑁(𝑔 (𝑐) − 𝑐,
𝑡

2
) ≥ 𝜆

𝑡

1
, (5)

which yields 𝜆𝑡
1
≥ 𝜆
𝑡

2
≥ 𝜆
𝑡

1
. That is, 𝜆𝑡

1
= 𝜆
𝑡

2
, which leads us

to the following equalities:

𝜆
𝑡

1
= 𝜆
𝑡

2
= ⋅ ⋅ ⋅ = 𝜆

𝑡

𝑛
= ⋅ ⋅ ⋅ . (6)

On the other hand, given 𝑔 ∈ 𝐼, we have

𝑁(𝑐,
𝑡

2
) ≤ 𝜆

𝑡

𝑛
𝑡

≤ 𝑁(𝑔
0
(𝑐) − 𝑐,

𝑡

𝑛
𝑡

) ≤ 𝑁 (𝑔
0
(𝑐) − 𝑐, 𝑡

0
)

= 𝑘 < 1,

(7)

since 𝑔(𝑐) ∈ 𝐿(𝑐,𝑁).
Let us suppose that there exists 𝑔

0
∈ 𝐼 such that 𝑔

0
(𝑐) ̸= 𝑐.

Then, there exists 𝑡
0
> 0 such that

𝑁(𝑔
0
(𝑐) − 𝑐, 𝑡

0
) = 𝑘 < 1. (8)

In addition, for each 𝑡 > 0, there exists 𝑛
𝑡
such that𝑁(𝑔

0
(𝑐) −

𝑐, 𝑡/𝑛
𝑡
) ≤ 𝑁(𝑔

0
(𝑐) − 𝑐, 𝑡

0
). Hence, by (6) and (7), we have that

𝑁(𝑐,
𝑡

2
) ≤ 𝜆

𝑡

𝑛
𝑡

≤ 𝑁(𝑔
0
(𝑐) − 𝑐,

𝑡

𝑛
𝑡

) ≤ 𝑁 (𝑔
0
(𝑐) − 𝑐, 𝑡

0
)

= 𝑘 < 1,

(9)

but

1 = lim
𝑡→∞

𝑁(𝑐,
𝑡

2
) ≤ 𝑘 < 1, (10)

a contradiction which completes the proof.

Remark 5. It can be checked that a fuzzy norm-preserving
mapping is associated, for each 𝑡 > 0, with a function 𝜌

𝑡
:

𝐷
𝑡
⊆ [0, 1] → [0, 1] such that

𝑁

(𝑓 (𝑥) − 𝑓 (𝑦) , 𝑡) = 𝜌

𝑡
(𝑁 (𝑥 − 𝑦, 𝑡)) . (11)

It is then apparent that fuzzy isometries are fuzzy norm-
preserving mappings taking 𝜌

𝑡
= 𝐼𝑑, 𝑡 > 0.

Theorem 6. Let (𝑋,𝑁) and (𝑌,𝑁

) be two fuzzy normed

spaces and let 𝑓 : 𝑋 → 𝑌 be a fuzzy norm-preserving
surjection satisfying 𝑓(0) = 0. Then 𝑓 is additive.

Proof. Fix 𝑥
0
∈ 𝑋 and let

𝐿 (𝑓 (𝑥
0
) ,𝑁

)

:= {𝑦 ∈ 𝑌 : 𝑁

(𝑦, 𝑡) = 𝑁


(2𝑓 (𝑥

0
) − 𝑦, 𝑡)

≥ 𝑁

(𝑓 (𝑥

0
) ,

𝑡

2
) , 𝑡 > 0} .

(12)

We know that 𝑓(𝑥
0
) ∈ 𝐿(𝑓(𝑥

0
),𝑁

) ̸= 0.

We now define map ℎ : 𝐿(𝑓(𝑥
0
),𝑁

) → 𝐿(𝑓(𝑥

0
),𝑁

) as

ℎ(𝑦) := 𝑓(𝑥
1
− 𝑥

) for a fixed 𝑥

1
∈ 𝑓
−1
(2𝑓(𝑥

0
)) and 𝑥


∈

𝑓
−1
(𝑦).
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Claim 1. ℎ is a fuzzy isometry from 𝐿(𝑓(𝑥
0
),𝑁

) to

𝐿(𝑓(𝑥
0
),𝑁

) which does not depend on the choice of 𝑥 ∈

𝑓
−1
(𝑦).
Let us first check that ℎ does not depend on the choice

of 𝑥 ∈ 𝑓
−1
(𝑦). To this end, suppose that {𝑥, 𝑥} ⊆ 𝑓

−1
(𝑦).

Then,

𝑁

(𝑓 (𝑥

1
− 𝑥

) − 𝑓 (𝑥

1
− 𝑥

) , 𝑡)

= 𝜌
𝑡
(𝑁 (𝑥


− 𝑥

, 𝑡)) = 𝑁


(𝑓 (𝑥


) − 𝑓 (𝑥


) , 𝑡)

= 𝑁

(0, 𝑡) = 1,

(13)

which is to say that 𝑓(𝑥
1
− 𝑥

) = 𝑓(𝑥

1
− 𝑥

).

Let us next prove that ℎ is a fuzzy isometry. Suppose that
𝑓(𝑥

) = 𝑦
 and 𝑓(𝑥) = 𝑦

, with 𝑥, 𝑥 ∈ 𝑋 and 𝑦, 𝑦 ∈ 𝑌.
Then,

𝑁

(ℎ (𝑦

) − ℎ (𝑦


) , 𝑡) = 𝑁


(𝑓 (𝑥

1
− 𝑥

) − 𝑓 (𝑥

1
− 𝑥

) , 𝑡)

= 𝜌
𝑡
(𝑁 (𝑥


− 𝑥

, 𝑡))

= 𝑁

(𝑓 (𝑥


) − 𝑓 (𝑥


) , 𝑡)

= 𝑁

(𝑦

− 𝑦

, 𝑡) .

(14)

Finally, let us check that ℎ maps 𝐿(𝑓(𝑥
0
),𝑁

) onto

𝐿(𝑓(𝑥
0
),𝑁

). Fix 𝑦 ∈ 𝐿(𝑓(𝑥

0
),𝑁

) and let 𝑥 ∈ 𝑋 such that

𝑓(𝑥

) = 𝑦
. From the definition of𝐿(𝑓(𝑥

0
),𝑁

), we know that

𝑁

(𝑦

, 𝑡) = 𝑁


(2𝑓 (𝑥

0
) − 𝑦

, 𝑡) ≥ 𝑁


(𝑓 (𝑥

0
) ,

𝑡

2
) . (15)

Hence,

𝑁

(ℎ (𝑦

) , 𝑡) = 𝑁


(𝑓 (𝑥

1
− 𝑥

) − 𝑓 (0) , 𝑡)

= 𝜌
𝑡
(𝑁 (𝑥

1
− 𝑥

− 0, 𝑡))

= 𝑁

(𝑓 (𝑥
1
) − 𝑓 (𝑥


) , 𝑡)

= 𝑁

(2𝑓 (𝑥

0
) − 𝑦

, 𝑡)

= 𝑁

(𝑦

, 𝑡)

≥ 𝑁

(𝑓 (𝑥

0
) ,

𝑡

2
) .

(16)

Furthermore,

𝑁

(2𝑓 (𝑥

0
) − ℎ (𝑦


) , 𝑡) = 𝑁


(2𝑓 (𝑥

0
) − 𝑓 (𝑥

1
− 𝑥

) , 𝑡)

= 𝑁

(𝑓 (𝑥
1
) − 𝑓 (𝑥

1
− 𝑥

) , 𝑡)

= 𝜌
𝑡
(𝑁 (𝑥

1
− 𝑥
1
+ 𝑥

− 0, 𝑡))

= 𝑁

(𝑓 (𝑥


) − 𝑓 (0) , 𝑡)

= 𝑁

(𝑦

, 𝑡)

= 𝑁

(ℎ (𝑦

) , 𝑡) .

(17)

As a consequence, we deduce that ℎ(𝐿(𝑓(𝑥
0
),𝑁

)) ⊆

𝐿(𝑓(𝑥
0
),𝑁

). Since it is a routinematter to verify that ℎ−1 = ℎ,

we infer that ℎ(𝐿(𝑓(𝑥
0
),𝑁

)) = 𝐿(𝑓(𝑥

0
),𝑁

), and the claim

is proved.
Thanks to Claim 1, we can apply Lemma 4 and conclude

that ℎ fixes 𝑓(𝑥
0
). Hence,

𝑓 (𝑥
0
) = ℎ (𝑓 (𝑥

0
)) = 𝑓 (𝑥

1
− 𝑥
0
) (18)

and, then,

1 = 𝑁

(𝑓 (𝑥
0
) − 𝑓 (𝑥

1
− 𝑥
0
) , 𝑡)

= 𝜌
𝑡
(𝑁 (2𝑥

0
− 𝑥
1
, 𝑡))

= 𝑁

(𝑓 (2𝑥

0
) − 𝑓 (𝑥

1
) , 𝑡)

= 𝑁

(𝑓 (2𝑥

0
) − 2𝑓 (𝑥

0
) , 𝑡)

(19)

for all 𝑡 > 0, which is to say that

𝑓 (2𝑥
0
) = 2𝑓 (𝑥

0
) . (20)

Next, let us define, for a fixed 𝑧 ∈ 𝑋, the following map:

𝑓
𝑧
(𝑥) := 𝑓 (𝑥 + 𝑧) − 𝑓 (𝑧) , (21)

for all 𝑥 ∈ 𝑋.
It is clear that 𝑓

𝑧
(0) = 0 and 𝑓

𝑧
is surjective since 𝑓 is

assumed to be also surjective. Furthermore, for all 𝑥, 𝑦 ∈ 𝑋

and 𝑡 > 0,

𝑁

(𝑓
𝑧
(𝑥) − 𝑓

𝑧
(𝑦) , 𝑡)

= 𝑁

(𝑓 (𝑥 + 𝑧) − 𝑓 (𝑦 + 𝑧) , 𝑡) = 𝜌

𝑡
(𝑁 (𝑥 − 𝑦, 𝑡)) ,

(22)

which is to say that 𝑓
𝑧
is also a fuzzy norm-preserving map.

Hence, by (20), we infer that 𝑓
𝑧
(2𝑥) = 2𝑓

𝑧
(𝑥), for all 𝑥 ∈ 𝑋.

Then, for all 𝑥, 𝑦 ∈ 𝑋, we have

𝑓 ((𝑥 − 𝑦) + 𝑦) − 𝑓 (𝑦)

= 𝑓
𝑦
(𝑥 − 𝑦) = 2𝑓

𝑦
(
𝑥 − 𝑦

2
)

= 2 (𝑓(
𝑥 − 𝑦

2
+ 𝑦) − 𝑓 (𝑦)) ,

(23)
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which yields

𝑓 (𝑥) + 𝑓 (𝑦) = 2𝑓(
𝑥 + 𝑦

2
) = 𝑓 (𝑥 + 𝑦) ; (24)

that is, 𝑓 is additive.

Let us recall here that additivity yieldsQ-linearity, which,
in presence of continuity, implies linearity. Hence, as a
straightforward corollary of Theorem 6, we obtain a fuzzy
version of the Mazur-Ulam theorem.

Corollary 7. Let (𝑋,𝑁) and (𝑌,𝑁

) be two fuzzy normed

spaces and let 𝑓 : 𝑋 → 𝑌 be a surjective fuzzy isometry.Then,
𝑓 is affine.

Proof. It suffices to apply Theorem 6 to 𝑔(𝑥) := 𝑓(𝑥) − 𝑓(0),
𝑥 ∈ 𝑋.
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[5] I. Kramosil and J. Michálek, “Fuzzy metrics and statistical
metric spaces,” Kybernetika, vol. 11, no. 5, pp. 326–334, 1975.

[6] T. Bag and S. K. Samanta, “Finite dimensional fuzzy normed
linear spaces,” Journal of Fuzzy Mathematics, vol. 11, no. 3, pp.
687–705, 2003.

[7] T. Bag and S. K. Samanta, “Fuzzy bounded linear operators,”
Fuzzy Sets and Systems, vol. 151, no. 3, pp. 513–547, 2005.

[8] S. Mazur and S. Ulam, “Sur les transformations isometriques
d’espaces vectoriels normes,” Comptes Rendus de l’Académie des
Sciences, vol. 194, pp. 946–948, 1932.
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