Mostrar el registro sencillo del ítem

dc.contributor.authorMoliner, Vicent
dc.contributor.authorRuiz-Pernía, José Javier
dc.contributor.authorLuk, Louis Y. P.
dc.contributor.authorDawson, William M.
dc.contributor.authorRoca, Maite
dc.contributor.authorLoveridge, E. Joel
dc.contributor.authorGlowacki, David R.
dc.contributor.authorHarvey, Jeremy N.
dc.contributor.authorMulholland, Adrian J.
dc.contributor.authorTuñón, Iñaki
dc.contributor.authorAllemann, Rudolf K.
dc.date.accessioned2014-06-10T06:48:55Z
dc.date.available2014-06-10T06:48:55Z
dc.date.issued2013
dc.identifier.citationLUK, Louis YP, et al. Unraveling the role of protein dynamics in dihydrofolate reductase catalysis. Proceedings of the National Academy of Sciences, 2013, vol. 110, no 41, p. 16344-16349ca_CA
dc.identifier.issn0027-8424
dc.identifier.urihttp://hdl.handle.net/10234/94530
dc.description.abstractProtein dynamics have controversially been proposed to be at the heart of enzyme catalysis, but identification and analysis of dynamical effects in enzyme-catalyzed reactions have proved very challenging. Here, we tackle this question by comparing an enzyme with its heavy (15N, 13C, 2H substituted) counterpart, providing a subtle probe of dynamics. The crucial hydride transfer step of the reaction (the chemical step) occurs more slowly in the heavy enzyme. A combination of experimental results, quantum mechanics/molecular mechanics simulations, and theoretical analyses identify the origins of the observed differences in reactivity. The generally slightly slower reaction in the heavy enzyme reflects differences in environmental coupling to the hydride transfer step. Importantly, the barrier and contribution of quantum tunneling are not affected, indicating no significant role for “promoting motions” in driving tunneling or modulating the barrier. The chemical step is slower in the heavy enzyme because protein motions coupled to the reaction coordinate are slower. The fact that the heavy enzyme is only slightly less active than its light counterpart shows that protein dynamics have a small, but measurable, effect on the chemical reaction rate.ca_CA
dc.format.extent6 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherNational Academy of Sciencesca_CA
dc.relation.isPartOfProceedings of the National Academy of Sciences ( 2013) vol. 110, no 41ca_CA
dc.rights© National Academy of Sciencesca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectKineticsca_CA
dc.subjectComputational chemistryca_CA
dc.subjectBiological chemistryca_CA
dc.subjectBiophysicsca_CA
dc.subjectQuantum biologyca_CA
dc.titleUnraveling the role of protein dynamics in dihydrofolate reductase catalysisca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1073/pnas.1312437110
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://www.pnas.org/content/110/41/16344.full.pdf+htmlca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem