Mostrar el registro sencillo del ítem

dc.contributor.authorSchull, Mitchell A.
dc.contributor.authorKnyazikhin, Yuri
dc.contributor.authorXu, Lan
dc.contributor.authorSamanta, Arun
dc.contributor.authorLatorre Carmona, Pedro
dc.contributor.authorLepine, L.
dc.contributor.authorJenkins, J. P.
dc.contributor.authorGanguly, S.
dc.contributor.authorMyneni, Ranga B.
dc.date.accessioned2012-09-19T10:50:06Z
dc.date.available2012-09-19T10:50:06Z
dc.date.issued2011
dc.identifier.citationJournal of Quantitative Spectroscopy and Radiative Transfer (Mar. 2011) vol. 112, no. 4, p. 736-750ca_CA
dc.identifier.issn0022-4073
dc.identifier.urihttp://hdl.handle.net/10234/47544
dc.description.abstractMany studies have been conducted to demonstrate the ability of hyperspectral data to discriminate plant dominant species. Most of them have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing or unknown land cover. In this paper we propose a physically based approach for separation of dominant forest type using hyperspectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy reflectance in terms of the leaf spectral scattering and two spectrally invariant and structurally varying variables—recollision and directional escape probabilities. The methodology is based on the idea of retrieving spectrally invariant parameters from hyperspectral data first, and then relating their values to structural characteristics of three-dimensional canopy structure. Theoretical and empirical analyses of ground and airborne data acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over two sites in New England, USA, suggest that the canopy spectral invariants convey information about canopy structure at both the macro- and micro-scales. The total escape probability (one minus recollision probability) varies as a power function with the exponent related to the number of nested hierarchical levels present in the pixel. Its base is a geometrical mean of the local total escape probabilities and accounts for the cumulative effect of canopy structure over a wide range of scales. The ratio of the directional to the total escape probability becomes independent of the number of hierarchical levels and is a function of the canopy structure at the macro-scale such as tree spatial distribution, crown shape and size, within-crown foliage density and ground cover. These properties allow for the natural separation of dominant forest classes based on the location of points on the total escape probability vs the ratio log–log plane.ca_CA
dc.format.extent15 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.rights© 2011 Elsevier Inc. All rights reservedca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectSpectral invariantsca_CA
dc.subjectVegetation structureca_CA
dc.subjectEcosystemca_CA
dc.subjectScalingca_CA
dc.subjectScattering albedoca_CA
dc.subjectHyperspectral dataca_CA
dc.subjectRadiative transferca_CA
dc.titleCanopy spectral invariants, Part2: Application to classification of forest types from hyperspectral dataca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1016/j.jqsrt.2010.06.004
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://www.sciencedirect.com/science/article/pii/S0022407310002499ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem