Mostrar el registro sencillo del ítem

dc.contributor.authorAranda Alonso, Clara
dc.contributor.authorAlvarez, Agustin
dc.contributor.authorChivrony, Vladimir S.
dc.contributor.authorDas, Chittaranjan
dc.contributor.authorRai, Monika
dc.contributor.authorSaliba, Michael
dc.date.accessioned2024-04-24T07:00:10Z
dc.date.available2024-04-24T07:00:10Z
dc.date.issued2024-01-17
dc.identifier.citationAranda, C. A., Alvarez, A. O., Chivrony, V. S., Das, C., Rai, M., & Saliba, M. (2024). Overcoming ionic migration in perovskite solar cells through alkali metals. Joule, 8(1), 241-254.ca_CA
dc.identifier.issn2542-4351
dc.identifier.urihttp://hdl.handle.net/10234/206518
dc.description.abstractAlkali metals, as additives in perovskite solar cells (PSCs), have been extensively investigated for their impact on performance enhancement. This performance is sensitive to ion-driven interfacial recombination processes that lead to voltage losses and perform with negative capacitance features in impedance spectroscopy (IS). In this study, we exploited negative capacitance as a tool to systematically investigate the influence of Li, Na, and K on the photovoltage of the wide band-gap material MAPbBr3, known for historical photovoltage losses. Sodium cations were found to mitigate adverse interfacial recombination pathways, yielding a remarkable stabilized open-circuit potential of 1.65 V. Impedance measurements indicated sodium significant influence within the material’s bulk, corroborated by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. These techniques confirmed the ability of Na to decrease ionic migration in perovskite materials. X-ray photoelectron spectroscopy (XPS) revealed the underlying mechanism by which Na accomplishes this task: through an electrostatic interaction with the organic compounds.ca_CA
dc.format.extent13 p.ca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relation.uriThis study did not generate new unique materials. All data are presented in the paper or supplemental information, and no standardized datasets were generated during this study.ca_CA
dc.rights© 2023 Published by Elsevier Inc.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjectadditivesca_CA
dc.subjectcapacitanceca_CA
dc.subjectenergy gapca_CA
dc.subjecthysteresisca_CA
dc.subjectperovskiteca_CA
dc.subjectperovskite solar cellsca_CA
dc.subjectphotoelectronsca_CA
dc.subjectphotonsca_CA
dc.subjectsecondary ion mass spectrometryca_CA
dc.subjectsodiumca_CA
dc.titleOvercoming ionic migration in perovskite solar cells through alkali metalsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.joule.2023.11.011
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameGerman Research Foundation (DFG)ca_CA
project.funder.nameMinisterio de Ciencia, Innovación y Universidadesca_CA
project.funder.nameCentro para el Desarrollo Tecnológico y la Innovaciónca_CA
oaire.awardNumberSPP2196, GRK 2642ca_CA
oaire.awardNumberPCI2020-112185ca_CA
oaire.awardNumberIDI-20210171ca_CA
dc.subject.ods7. Energia asequible y no contaminanteca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem