Mostrar el registro sencillo del ítem

dc.contributor.authorMenda, Ugur Deneb
dc.contributor.authorRibeiro, Guilherme
dc.contributor.authorDeuermeier, Jonas
dc.contributor.authorLópez, Esther
dc.contributor.authorNunes, Daniela
dc.contributor.authorJana, Santanu
dc.contributor.authorArtacho, Irene
dc.contributor.authorMartins, Rodrigo
dc.contributor.authorMora-Sero, Ivan
dc.contributor.authorMendes, Manuel Joao
dc.contributor.authorRamiro, Iñigo
dc.date.accessioned2024-03-15T09:32:20Z
dc.date.available2024-03-15T09:32:20Z
dc.date.issued2023-10-18
dc.identifier.citationMenda, U.D.; Ribeiro, G.; Deuermeier, J.; López, E.; Nunes, D.; Jana, S.; Artacho, I.; Martins, R.; Mora-Seró, I.; Mendes, M.J.; et al. Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineering. ACS Photonics 2023, 10, 10, 3647-3655. https://doi.org/10.1021/acsphotonics.3c00738ca_CA
dc.identifier.issn2330-4022
dc.identifier.urihttp://hdl.handle.net/10234/206198
dc.description.abstractBy harvesting a wider range of the solar spectrum, intermediate band solar cells (IBSCs) can achieve efficiencies 50% higher than those of conventional single-junction solar cells. For this, additional requirements are imposed on the light-absorbing semiconductor, which must contain a collection of in-gap levels, called intermediate band (IB), optically coupled to but thermally decoupled from the valence and conduction bands (VB and CB). Quantum-dot-in-perovskite (QDiP) solids, where inorganic quantum dots (QDs) are embedded in a halide perovskite matrix, have emerged as a promising material platform for developing IBSCs. In this work, QDiP solids with good morphological and structural quality and strong absorption and emission related to the presence of in-gap QD levels are synthesized. With them, QDiP-based IBSCs are fabricated, and by means of temperature-dependent photocurrent measurements, it is shown that the IB is strongly thermally decoupled from the valence and conduction bands. The activation energy of the IB → CB thermal escape of electrons is measured to be 204 meV, resulting in the mitigation of this detrimental process even under room-temperature operation, thus fulfilling the first mandatory requisite to enable high-efficiency IBSCs.ca_CA
dc.format.extent9 p.ca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfACS Photonics, 2023, vol. 10, no 10ca_CA
dc.rightsCopyright © American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/CNE/1.0/ca_CA
dc.subjectintermediate band solar cellca_CA
dc.subjectcolloidal quantum dotsca_CA
dc.subjectquantum dots in perovskiteca_CA
dc.subjectthermal carrier escapeca_CA
dc.titleThermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acsphotonics.3c00738
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/full/10.1021/acsphotonics.3c00738ca_CA
dc.description.sponsorshipSFRH/BD/151095/2021
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.identifierhttp://dx.doi.org/10.13039/501100011033ca_CA
project.funder.nameEuropean Unionca_CA
project.funder.nameFundação para a Ciência e Tecnologiaca_CA
project.funder.nameMinisterio de Ciencia e Innovaciónca_CA
oaire.awardNumberinfo:eu-repo/grantAgreement/EC/H2020/891686ca_CA
oaire.awardNumberinfo:eu-repo/grantAgreement/EC/H2020/952169ca_CA
oaire.awardNumberLA/P/0037/2020ca_CA
oaire.awardNumberUIDP/50025/2020ca_CA
oaire.awardNumberUIDB/50025/2020ca_CA
oaire.awardNumberMCIN/PEICTI2021-2023/RYC2021-034610-Ica_CA
oaire.awardNumberSFRH/BD/151095/2021ca_CA
dc.subject.ods7. Energia asequible y no contaminanteca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem