Mostrar el registro sencillo del ítem

dc.contributor.authorClimente, Juan I.
dc.contributor.authorSzafran, Bartłomiej
dc.date.accessioned2024-01-12T07:17:48Z
dc.date.available2024-01-12T07:17:48Z
dc.date.issued2023-10-18
dc.identifier.citationClimente, J.; Szafran, B. Electronic Structure and Optical Spectrum of Thick HgTe Colloidal Nanoplatelets. ACS Photonics 2023, 10, 3763-3771. https://doi.org/10.1021/acsphotonics.3c00999ca_CA
dc.identifier.issn2330-4022
dc.identifier.urihttp://hdl.handle.net/10234/205419
dc.description.abstractThe electronic structure and optical transitions of HgTe nanoplatelets (NPLs) are calculated by means of an 8-band k·p Hamiltonian. We show that, for NPL thickness between the limits of strong confinement (∼1 nm) and that of band gap collapse (∼6 nm), the photophysics is largely governed by the Γ6 – Γ8 band coupling. This leads to a nontrivial size dependence of the energy spectrum and charge distribution. A prominent effect is the formation of hybrid states in the conduction band, which evolve gradually from volume to surface localization as the thickness increases. This property enables controlled switching from direct to indirect exciton behavior without the need of using type-II heterostructures, which suppresses interband recombination. By contrast, intraband transition rates are enhanced. The small band gap of thick HgTe NPLs, together with the large binding energy of excitons, suggests that the excitonic insulator phase may be within reach.ca_CA
dc.format.extent9 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfACS Photonics, 2023, vol. 10, no 10ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/CNE/1.0/ca_CA
dc.subjectcolloidal quantum wellsca_CA
dc.subjectband couplingca_CA
dc.subjectexcitonca_CA
dc.subjecttopological insulatorca_CA
dc.subjectk-p theoryca_CA
dc.titleElectronic Structure and Optical Spectrum of Thick HgTe Colloidal Nanoplateletsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acsphotonics.3c00999
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/full/10.1021/acsphotonics.3c00999?casa_token=pertFudSHlwAAAAA%3A-u3l0mxFEF9AC9b955C6wXBWWTDPzelo5ea6u4hcNDSD8U_Si7N0oiL_Ju3JzlNiDier-VKN-LF-5Aca_CA
dc.description.sponsorshipBS acknowledges support from the program “Excellence initiative–research university” for the AGH University of Krakow. JIC acknowledges support from Grant PID2021-128659NB-I00, funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”, as well as support from Generalitat Valenciana Prometeo project 22I235-CIPROM/2021/078. Computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) within computational grant no. PLG/2023/016317 was used.
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA
project.funder.identifierhttp://dx.doi.org/10.13039/501100011033ca_CA
project.funder.nameAGH University of Krakowca_CA
project.funder.nameMinisterio de Ciencia e Innovaciónca_CA
project.funder.nameGeneralitat Valencianaca_CA
oaire.awardNumberMCIN/PEICTI2021-2023/PID2021-128659NB-I00ca_CA
oaire.awardNumber22I235-CIPROM/2021/078ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem