Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález Cuadra, Jaime
dc.contributor.authorPorcar García, Samuel
dc.contributor.authorFraga Chiva, Diego
dc.contributor.authorLyubenova, Teodora
dc.contributor.authorCarda Castelló, Juan Bautista
dc.date.accessioned2023-09-14T17:22:42Z
dc.date.available2023-09-14T17:22:42Z
dc.date.issued2021
dc.identifier.citationCUADRA, Jaime G., et al. Enhanced electrical properties of alkali-doped ZnO thin films with chemical process. En Solar. MDPI, 2021. p. 30-40ca_CA
dc.identifier.issn2673-9941
dc.identifier.urihttp://hdl.handle.net/10234/204179
dc.description.abstractDoped ZnO are among the most attractive transparent conductive oxides for solar cells because they are relatively cheap, can be textured for light trapping, and readily produced for large-scale coatings. Here, we focus on the development of alternative Na and K-doped ZnO prepared by an easy low-cost spray pyrolysis method for conducting oxide application. To enhance the electrical properties of zinc oxide, alkali-doped Zn1−x MxO (x = 0.03) solid solutions were investigated. The resulting layers crystallize in a single hexagonal phase of wurtzite structure with preferred c-axis orientation along a (002) crystal plane. Dense, well attached to the substrate, homogeneous and highly transparent layers were obtained with great optical transmittance higher than 80%. The optical energy band gap of doped ZnO films increase from 3.27 to 3.29 eV by doping with Na and K, respectively. The electrical resistivity of the undoped ZnO could be decreased from 1.03 × 10−1 Ω.cm to 5.64 × 10−2 Ω.cm (K-doped) and 3.18 × 10−2 (Na-doped), respectively. Lastly, the carrier concentrations increased from 5.17 × 1017 (undoped ZnO) to 1 × 1018 (doped ZnO).ca_CA
dc.format.extent11 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherMDPIca_CA
dc.relation.isPartOfEn Solar. MDPI, 2021. p. 30-40ca_CA
dc.rightsCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).ca_CA
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/ca_CA
dc.subjectoxide materialsca_CA
dc.subjectsemiconductorsca_CA
dc.subjectthin filmsca_CA
dc.subjectelectronic propertiesca_CA
dc.titleEnhanced Electrical Properties of Alkali-Doped ZnO Thin Films with Chemical Processca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.3390/solar1010004
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://www.mdpi.com/2673-9941/1/1/4ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Economía y Competitividad de Españaca_CA
oaire.awardNumberENE2017-87671- C3-3-Rca_CA
oaire.awardNumberPID2020-116719RB-C43ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como: Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).