Mostrar el registro sencillo del ítem

dc.contributor.authorKhairani, Inna Yusnila
dc.contributor.authorMínguez-Vega, Gladys
dc.contributor.authorDoñate-Buendía, Carlos
dc.contributor.authorGökce, Bilal
dc.date.accessioned2023-09-14T08:43:37Z
dc.date.available2023-09-14T08:43:37Z
dc.date.issued2023-07-06
dc.identifier.citationKhairani, I. Y., Mínguez-Vega, G., Doñate-Buendía, C., & Gökce, B. (2023). Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production. Physical Chemistry Chemical Physics, 25(29), 19380-19408.ca_CA
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.urihttp://hdl.handle.net/10234/204171
dc.description.abstractNanoparticles have become increasingly important for a variety of applications, including medical diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The development of nanoparticles with different compositions, sizes, and surface properties is essential to optimize their performance for specific applications. Pulsed laser ablation in liquid is a green chemistry approach that allows for the production of ligand-free nanoparticles with diverse shapes and phases. Despite these numerous advantages, the current production rate of this method remains limited, with typical rates in the milligram per hour range. To unlock the full potential of this technique for various applications, researchers have dedicated efforts to scaling up production rates to the gram-per-hour range. Achieving this goal necessitates a thorough understanding of the factors that limit pulsed laser ablation in liquid (PLAL) productivity, including laser, target, liquid, chamber, and scanner parameters. This perspective article explores these factors and provides a roadmap for increasing PLAL productivity that can be adapted to specific applications. By carefully controlling these parameters and developing new strategies for scaling up production, researchers can unlock the full potential of pulsed laser ablation in liquids.ca_CA
dc.format.extent29 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherRoyal Society of Chemistryca_CA
dc.relation.isPartOfPhysical Chemistry Chemical Physics, Vol. 25 Issue 29 (2023)ca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/ca_CA
dc.subjectlaserca_CA
dc.subjectnanoparticlesca_CA
dc.subjectpulsed laser ablation in liquid (PLAL)ca_CA
dc.titleGreen nanoparticle synthesis at scale : a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput productionca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1039/D3CP01214J
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameDeutsche Forschungsgemeinschaft (DFG, German Research Foundation)ca_CA
project.funder.nameEuropean Union's Horizon 2020 research and innovation programca_CA
oaire.awardNumbergrants GO 2566/10-1, GO 2566/14-1ca_CA
oaire.awardNumbergrant agreement No. 952068ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como: http://creativecommons.org/licenses/by-nc/4.0/