Mostrar el registro sencillo del ítem

dc.contributor.authorCámara Molina, Javier Cristóbal
dc.contributor.authorMoliner, Emma
dc.contributor.authorMartínez-Rodrigo, María D.
dc.contributor.authorConnolly, D. P.
dc.contributor.authorYurchenko, D.
dc.contributor.authorGalvín, Pedro
dc.contributor.authorRomero, A.
dc.date.accessioned2023-04-24T09:21:48Z
dc.date.available2023-04-24T09:21:48Z
dc.date.issued2023
dc.identifier.citationCÁMARA-MOLINA, J. C., et al. 3D printed energy harvesters for railway bridges-Design optimisation. Mechanical Systems and Signal Processing, 2023, vol. 190, p. 110133.ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/202255
dc.description.abstractThis paper investigates the optimal design of 3D printed energy harvesters for railway bridges. The type of harvester studied is a cantilever bimorph beam with a mass at the tip and a load resistance. These parameters are adjusted to find the optimal design that tunes the harvester to the fundamental frequency of the bridge. An analytical model based on a variational formulation to represent the electromechanical behaviour of the device is presented. The optimisation problem is solved using a genetic algorithm with constraints of geometry and structural integrity. The proposed procedure is implemented in the design and manufacture of an energy harvesting device for a railway bridge on an in-service high-speed line. To do so, first the methodology is validated experimentally under laboratory conditions and shown to offer strong performance. Next the in-situ railway bridge is instrumented using accelerometers and the results used to evaluate energy harvesting performance. The results show the energy harvested in a time window of three and a half hours (20 train passages) is 𝐸� = 109.32 mJ. The proposed methodology is particularly useful for bridges with fundamental mode shapes above 4.5 Hz, however optimal design curves are also presented for the most common railway bridges found in practice. A novelty of this work is the use of additive manufacturing to 3D print energy harvesters, thus maximising design flexibility and energy performance.ca_CA
dc.format.extent22 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relation.isPartOfMechanical Systems and Signal Processing 190 (2023) 110133ca_CA
dc.rights0888-3270/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).ca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/ca_CA
dc.subjectPiezoelectric energy harvestingca_CA
dc.subjectRailway bridgesca_CA
dc.subjectHigh-speed trainca_CA
dc.subjectCantilever bimorph beamca_CA
dc.subjectAdditive manufacturingca_CA
dc.subjectGenetic algorithmca_CA
dc.title3D printed energy harvesters for railway bridges-Design optimisationca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.ymssp.2023.110133
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://www.sciencedirect.com/science/article/pii/S0888327023000407ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Ciencia, Innovación y Universidadesca_CA
project.funder.namePrograma Operativo FEDER 2014-2020ca_CA
project.funder.nameCentro Informático Científico de Andalucía (CICA)ca_CA
oaire.awardNumberPID2019-109622RBca_CA
oaire.awardNumberUS-126491ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

0888-3270/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como: 0888-3270/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).