Mostrar el registro sencillo del ítem

dc.contributor.authorElvira, Iris
dc.contributor.authorPuerto Vivar, Andrés
dc.contributor.authorMínguez-Vega, Gladys
dc.contributor.authorRodríguez-Palomo, Adrián
dc.contributor.authorGómez-Tornero, Alejandro
dc.contributor.authorGarcia Cabañes, Angel
dc.contributor.authorCarrascosa Rico, Mercedes
dc.date.accessioned2023-01-17T11:03:15Z
dc.date.available2023-01-17T11:03:15Z
dc.date.issued2022-10-27
dc.identifier.citationIris Elvira, Andrés Puerto, Gladys Mínguez-Vega, Adrián Rodríguez-Palomo, Alejandro Gómez-Tornero, Angel García-Cabañes, and Mercedes Carrascosa, "Micro-patterns of gold nanoparticles assembled by photovoltaic optoelectronic tweezers: application to plasmonic fluorescence enhancement," Optics Express 30, 41541-41553 (2022)ca_CA
dc.identifier.issn1094-4087
dc.identifier.urihttp://hdl.handle.net/10234/201370
dc.description.abstractNoble metal nanostructures are well-known for their ability to increase the efficiency of different optical or physical phenomena due to their plasmonic behavior. This work presents a simple strategy to obtain Au plasmonic patterns by optically induced nanoparticle assembly and its application as fluorescence enhancement platforms. This strategy is based on the so-called photovoltaic optoelectronic tweezers (PVOT) being the first time they are used for fabricating Au periodic micro-patterns. Fringe patterns with a sub-structure of aggregates, assembled from individual spherical nanoparticles of 3.5 or 170 nm diameters, are successfully obtained. The spatial distribution of the aggregates is controlled with micrometric accuracy and the patterns can be arranged over large-scale active areas (tens of mm2). The outcome for the ultra-small (3.5 nm) particles is particularly relevant because this diameter is the smallest one manipulated by PVOT so far. Testing experiments of plasmonic fluorescence enhancement show that the 170-nm patterns present a much better plasmonic behavior. For the 170-nm platform they reveal a 10-fold enhancement factor in the fluorescence of Rhodamine-B dye molecules and a 3-fold one for tagged DNA biomolecules. Hence, the results suggest that these latter plasmonic platforms are good candidates for efficient bio-imaging and biosensing techniques, among other applications.ca_CA
dc.format.extent13 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherOptica Publishing Groupca_CA
dc.relation.isPartOfOptics Express Vol. 30, Issue 23 (2022)ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjectnanophotonicsca_CA
dc.subjectmetamaterialsca_CA
dc.subjectphotonic crystalsca_CA
dc.titleMicro-patterns of gold nanoparticles assembled by photovoltaic optoelectronic tweezers: application to plasmonic fluorescence enhancementca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1364/OE.471928
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameAgencia Estatal de Investigaciónca_CA
project.funder.nameMinisterio de Ciencia e Innovaciónca_CA
project.funder.nameUniversitat Jaume Ica_CA
oaire.awardNumberPID2019-110927RB-I00, PID2020-116192RB-I00ca_CA
oaire.awardNumberMAT2017-83951-Rca_CA
oaire.awardNumberUJI-B2019-37ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem