Mostrar el registro sencillo del ítem

dc.contributor.authorCalatayud, Julia
dc.contributor.authorCortés, Juan Carlos
dc.contributor.authorJornet, Marc
dc.date.accessioned2022-11-30T17:20:10Z
dc.date.available2022-11-30T17:20:10Z
dc.date.issued2018-08-13
dc.identifier.citationCalatayud, J., Cortés, J. C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279.ca_CA
dc.identifier.issn0378-4371
dc.identifier.urihttp://hdl.handle.net/10234/201008
dc.description.abstractThis paper deals with the damped pendulum random differential equation: X¨(t)+2ω0ξX˙(t) + ω 2 0 X(t) = Y(t), t ∈ [0, T ], with initial conditions X(0) = X0 and X˙(0) = X1. The forcing term Y(t) is a stochastic process and X0 and X1 are random variables in a common underlying complete probability space (Ω, F, P). The term X(t) is a stochastic process that solves the random differential equation in both the sample path and in the Lp senses. To understand the probabilistic behavior of X(t), we need its joint finite-dimensional distributions. We establish mild conditions under which X(t) is an absolutely continuous random variable, for each t, and we find its probability density function fX(t)(x). Thus, we obtain the first finite-dimensional distributions. In practice, we deal with two types of forcing term: Y(t) is a Gaussian process, which occurs with the damped pendulum stochastic differential equation of Itô type; and Y(t) can be approximated by a sequence {YN (t)} ∞ N=1 in L2 ([0, T ] × Ω), which occurs with Karhunen–Loève expansions and some random power series. Finally, we provide numerical examples in which we choose specific random variables X0 and X1 and a specific stochastic process Y(t), and then, we find the probability density function of X(t).ca_CA
dc.format.extent19 p.ca_CA
dc.language.isoengca_CA
dc.publisherElsevier B.V.ca_CA
dc.relationPrograma de Ayudas de Investigación y Desarrollo (PAID)ca_CA
dc.relation.isPartOfPhysica A: Statistical Mechanics and its Applications, Vol. 512 (15 December 2018)ca_CA
dc.rights© 2018 Elsevier B.V. All rights reserved.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjectdamped pendulum random differential equationca_CA
dc.subjectstochastic methods in physicsca_CA
dc.subjectprobability density functionca_CA
dc.subjectnumerical analysisca_CA
dc.subject34F05ca_CA
dc.subject60H35ca_CA
dc.subject65Z05ca_CA
dc.subject60H10ca_CA
dc.subject93E03ca_CA
dc.titleThe damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density functionca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.physa.2018.08.024
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttps://www.sciencedirect.com/science/article/pii/S0378437118309762?via%3Dihub#d1e711ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Ciencia e Innovaciónca_CA
project.funder.nameUniversitat Politècnica de Valènciaca_CA
oaire.awardNumberMTM2017–89664–Pca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem