Mostrar el registro sencillo del ítem

dc.contributor.authorCalatayud, Julia
dc.contributor.authorCortés, Juan Carlos
dc.contributor.authorJornet, Marc
dc.date.accessioned2022-11-30T15:44:22Z
dc.date.available2022-11-30T15:44:22Z
dc.date.issued2018-12
dc.identifier.citationCalatayud, J., Cortés, J. C., & Jornet, M. (2018). Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulation. Open Mathematics, 16(1), 1651-1666.ca_CA
dc.identifier.issn2391-5455
dc.identifier.urihttp://hdl.handle.net/10234/201004
dc.description.abstractThis paper presents a methodology to quantify computationally the uncertainty in a class of differential equations often met in Mathematical Physics, namely random non-autonomous second-order linear differential equations, via adaptive generalized Polynomial Chaos (gPC) and the stochastic Galerkin projection technique. Unlike the random Fröbenius method, which can only deal with particular random linear differential equations and needs the random inputs (coefficients and forcing term) to be analytic, adaptive gPC allows approximating the expectation and covariance of the solution stochastic process to general random second-order linear differential equations. The random inputs are allowed to functionally depend on random variables that may be independent or dependent, both absolutely continuous or discrete with infinitely many point masses. These hypotheses include a wide variety of particular differential equations, which might not be solvable via the random Fröbenius method, in which the random input coefficients may be expressed via a Karhunen-Loève expansion.ca_CA
dc.format.extent16 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherDe Gruyterca_CA
dc.relationPrograma de Ayudas de Investigación y Desarrollo (PAID)ca_CA
dc.relation.isPartOfOpen Mathematics, Vol.16, Issue 1 (2018)ca_CA
dc.rights© 2018 Calatayud et al., published by De Gruyterca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/ca_CA
dc.subjectnon-autonomous and random dynamical systemsca_CA
dc.subjectcomputational uncertainty quantificationca_CA
dc.subjectadaptive generalized Polynomial Chaosca_CA
dc.subjectstochastic Galerkin projection techniqueca_CA
dc.subjectrandom Fröbenius methodca_CA
dc.subject34F05ca_CA
dc.subject60H35ca_CA
dc.subject93E03ca_CA
dc.titleComputational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulationca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1515/math-2018-0134
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Economía y Competitividadca_CA
project.funder.nameUniversitat Politècnica de Valènciaca_CA
oaire.awardNumberMTM2017–89664–Pca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2018 Calatayud et al., published by De Gruyter
Excepto si se señala otra cosa, la licencia del ítem se describe como: © 2018 Calatayud et al., published by De Gruyter