Mostrar el registro sencillo del ítem

dc.contributor.authorCalatayud, Julia
dc.contributor.authorCortés, Juan Carlos
dc.contributor.authorJornet, Marc
dc.contributor.authorVillanueva, Rafael-Jacinto
dc.date.accessioned2022-11-30T14:42:33Z
dc.date.available2022-11-30T14:42:33Z
dc.date.issued2018-10-22
dc.identifier.citationCalatayud, J, Cortés, JC, Jornet, M, Villanueva, RJ. Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Math Meth Appl Sci. 2018; 41: 9618– 9627. https://doi.org/10.1002/mma.5315ca_CA
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.urihttp://hdl.handle.net/10234/200999
dc.description.abstractPopulation dynamics models consisting of nonlinear difference equations allow us to get a better understanding of theprocesses involved in epidemiology. Usually, these mathematical models are studied under a deterministic approach.However, in order to take into account the uncertainties associated with the measurements of the model input param-eters, a more realistic approach would be to consider these inputs as random variables. In this paper, we study therandom time-discrete epidemiological models SIS, SIR, SIRS, and SEIR using a powerful unified approach basedupon the so-called adaptive generalized polynomial chaos (gPC) technique. The solution to these random differenceequations is a stochastic process in discrete time, which represents the number of susceptible, infected, recovered,etc individuals at each time step. We show, via numerical experiments, how adaptive gPC permits quantifying theuncertainty for the solution stochastic process of the aforementioned random time-discrete epidemiological modeland obtaining accurate results at a cheap computational expense. We also highlight how adaptive gPC can be appliedin practice, by means of an example using real data.ca_CA
dc.format.extent10 p.ca_CA
dc.language.isoengca_CA
dc.publisherJohn Wiley & Sons, Ltd.ca_CA
dc.relationPrograma de Ayudas de Investigación y Desarrollo (PAID)ca_CA
dc.relation.isPartOfMathematical Methods in the Applied Sciences, Vol. 41, Iss.18. Special Issue: Biomathematics/Advanced Analysis in Pure & Applied Sciences (Decembre 2018)ca_CA
dc.rights© 2018 John Wiley & Sons, Ltd.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjectadaptive gPCca_CA
dc.subjectcomputational methods for stochastic equationsca_CA
dc.subjectcomputational uncertainty quantificationca_CA
dc.subjectrandom nonlinear difference equations modelca_CA
dc.subjectrandom population dynamics modelca_CA
dc.subjectrandom time-discrete epidemiological modelca_CA
dc.subjectstochastic difference equationsca_CA
dc.titleComputational uncertainty quantification for random time‐discrete epidemiological models using adaptive gPCca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1002/mma.5315
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttps://onlinelibrary.wiley.com/doi/10.1002/mma.5315ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Economía y Competitividadca_CA
project.funder.nameUniversitat Politècnica de Valènciaca_CA
oaire.awardNumberMTM2017–89664–Pca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem