Mostrar el registro sencillo del ítem

dc.contributor.authorCalatayud, Julia
dc.contributor.authorCortés, Juan Carlos
dc.contributor.authorJornet, Marc
dc.date.accessioned2022-11-25T18:56:38Z
dc.date.available2022-11-25T18:56:38Z
dc.date.issued2019-08-16
dc.identifier.citationCalatayud, J., Cortés, J. C., & Jornet, M. (2019). Improving the approximation of the probability density function of random nonautonomous logistic‐type differential equations. Mathematical Methods in the Applied Sciences, 42(18), 7259-7267.ca_CA
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.urihttp://hdl.handle.net/10234/200943
dc.description.abstractIn this paper, we address the problem of approximating the probability density function of the following random logistic differential equation: P ′ (t, 𝜔�) = A(t, 𝜔�)(1 − P(t, 𝜔�))P(t, 𝜔�), t ∈ [t0, T], P(t0, 𝜔�) = P0(𝜔�), where 𝜔� is any outcome in the sample space Ω. In the recent contribution [Cortés, JC, et al. Commun Nonlinear Sci Numer Simulat 2019; 72: 121–138], the authors imposed conditions on the diffusion coefficient A(t) and on the initial condition P0 to approximate the density function f1(p, t) of P(t): A(t) is expressed as a Karhunen–Loève expansion with absolutely continuous random coefficients that have certain growth and are independent of the absolutely continuous random variable P0, and the density of P0, 𝑓�P0 , is Lipschitz on (0, 1). In this article, we tackle the problem in a different manner, by using probability tools that allow the hypotheses to be less restrictive. We only suppose that A(t) is expanded on L2([t0, T] × Ω), so that we include other expansions such as random power series. We only require absolute continuity for P0, so that A(t) may be discrete or singular, due to a modified version of the random variable transformation technique. For 𝑓�P0 , only almost everywhere continuity and boundedness on (0, 1) are needed. We construct an approximating sequence {𝑓� N 1 (p, t)}∞ N=1 of density functions in terms of expectations that tends to f1(p, t) pointwise. Numerical examples illustrate our theoretical resultsca_CA
dc.format.extent9 p.ca_CA
dc.language.isoengca_CA
dc.publisherJohn Wiley & Sons, Ltd.ca_CA
dc.relationPrograma de Ayudas de Investigación y Desarrolloca_CA
dc.relation.isPartOfMathematical Methods in the Applied Sciences, Vol. 42, Issue18 (December 2019)ca_CA
dc.rights© 2019 John Wiley & Sons, Ltd.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjectmean square expansionca_CA
dc.subjectprobability density functionca_CA
dc.subjectrandom logistic differential equationca_CA
dc.subject34F05ca_CA
dc.subject60H35ca_CA
dc.subject60H10ca_CA
dc.titleImproving the approximation of the probability density function of random nonautonomous logistic-type differential equationsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1002/mma.5834
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttps://onlinelibrary.wiley.com/doi/10.1002/mma.5834ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameSecretaría de Estado de Investigación, Desarrollo e Innovaciónca_CA
project.funder.nameUniversitat Politècnica de Valènciaca_CA
oaire.awardNumberMTM2017-89664-Pca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem