Mostrar el registro sencillo del ítem

dc.contributor.authorMota-Babiloni, Adrián
dc.contributor.authorMontanez Barrera, Alejandro
dc.contributor.authorBarroso-Maldonado, Juan Manuel
dc.contributor.authorBedoya-Santacruz, A.F.
dc.date.accessioned2022-10-14T12:02:06Z
dc.date.available2022-10-14T12:02:06Z
dc.date.issued2022-05-22
dc.identifier.citationMontañez-Barrera, J. A., Barroso-Maldonado, J. M., Bedoya-Santacruz, A. F., & Mota-Babiloni, A. (2022). Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels. International Journal of Heat and Mass Transfer, 194, 123017.ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/200386
dc.description.abstractAccurate pressure drop estimation in forced boiling phenomena is important during the thermal analysis and the geometric design of cryogenic heat exchangers. However, current methods to predict the pressure drop have one of two problems: lack of accuracy or generalization to different situations. In this work, we present the correlated-informed neural networks (CoINN), a new paradigm in applying the artificial neural network (ANN) technique combined with a successful pressure drop correlation as a mapping tool to predict the pressure drop of zeotropic mixtures in micro-channels. The proposed approach is inspired by Transfer Learning, which is highly used in deep learning problems with reduced datasets. Our method improves the ANN performance by transferring the knowledge of the Sun & Mishima correlation for the pressure drop to the ANN. The correlation having physical and phenomenological implications for the pressure drop in micro-channels considerably improves the performance and generalization capabilities of the ANN. The final architecture consists of three inputs: the mixture vapor quality, the micro-channel inner diameter, and the available pressure drop correlation. The results show the benefits gained using the correlated-informed approach predicting experimental data used for training and a posterior test with a mean relative error (mre) of 6%, lower than the Sun & Mishima correlation of 13%. Additionally, this approach can be extended to other mixtures and experimental settings, a missing feature in other approaches for mapping correlations using ANNs for heat transfer applications.ca_CA
dc.format.extent9 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relationJuan de la Ciervaca_CA
dc.relation.isPartOfInternational Journal of Heat and Mass Transfer Volume 194, 15 September 2022, 123017ca_CA
dc.rights© 2022 Elsevier Ltd. All rights reservedca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjecttwo-phase flowca_CA
dc.subjectpressure dropca_CA
dc.subjectzeotropic mixturesca_CA
dc.subjectmachine learningca_CA
dc.subjecttransfer learningca_CA
dc.subjectANNca_CA
dc.subjectmicro-channelsca_CA
dc.titleCorrelated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channelsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.ijheatmasstransfer.2022.123017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://www.sciencedirect.com/science/article/pii/S0017931022004902ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameAgencia Estatal de Investigaciónca_CA
oaire.awardNumberIJC2019-038997-Ica_CA
oaire.awardNumberMCIN/AEI/10.13039/501100011033ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem