Mostrar el registro sencillo del ítem

dc.contributor.authorTanghe, Ivo
dc.contributor.authorLlusar, Jordi
dc.contributor.authorClimente, Juan I.
dc.contributor.authorBarker, Alex J.
dc.contributor.authorPaternò, Giuseppe Maria
dc.contributor.authorScotognella, Francesco
dc.contributor.authorPolovitsyn, Anatolii
dc.contributor.authorKhan, Ali Hossain
dc.contributor.authorhens, zeger
dc.contributor.authorVan Thourhout, Dries
dc.contributor.authorGeiregat, Pieter
dc.contributor.authorMoreels, Iwan
dc.date.accessioned2022-09-30T13:10:22Z
dc.date.available2022-09-30T13:10:22Z
dc.date.issued2022
dc.identifier.citationTanghe, I., Llusar, J., Climente, J. I., Barker, A., Paternò, G., Scotognella, F., Polovitsyn, A., Khan, A. H., Hens, Z., Van Thourhout, D., Geiregat, P., Moreels, I., Role of Thermally Occupied Hole States in Room-Temperature Broadband Gain in CdSe/CdS Giant-Shell Nanocrystals. Adv. Optical Mater. 2022, 2201378. https://doi.org/10.1002/adom.202201378ca_CA
dc.identifier.issn2195-1071
dc.identifier.urihttp://hdl.handle.net/10234/200067
dc.description.abstractGrowing CdSe/CdS nanocrystals from a large CdSe core, and employing a giant CdS shell, a continuous, broadband gain spectrum, covering the spectral range between the CdSe and the CdS band edge, is induced. As revealed by k·p calculations, this feature is enabled by a set of closely spaced S-, P- and, for larger CdSe cores, D-state hole levels, which are thermally occupied at room temperature, combined with a sparse density of electron states. This leads to a range of bleach signals in the transient absorption spectra that persist up to a microsecond. By extending a state-filling model including relevant higher-energy states and a Fermi–Dirac distribution of holes at finite temperature, it is shown that thermal occupancy can lower the gain threshold for excited states. Inclusion of Gaussian broadening of discrete transitions also leads to a smoothening of the gain threshold spectrum. Next to a direct measurement of the gain threshold, a method is also developed to extract this from the gain lifetime, taking advantage that population inversion is limited by Auger recombination and recombination rates scale with the exciton density as 〈N〉·(〈N〉 − 1). The results should be readily extendable to other systems, such as perovskite or III–V colloidal nanocrystals.ca_CA
dc.format.extent9 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherWileyca_CA
dc.relation.isPartOfAdvanced Optical Materials 2022, 2201378ca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/ca_CA
dc.subjectauger recombinationca_CA
dc.subjectcolloidal nanocrystalsca_CA
dc.subjectgain lifetimeca_CA
dc.subjectk⋅p calculationsca_CA
dc.subjecttransient absorption spectroscopyca_CA
dc.titleRole of thermally occupied hole states in room-temperature broadband gain in CdSe/CdS giant-shell nanocrystalsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1002/adom.202201378
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.identifierPHOCONAca_CA
project.funder.nameEuropean Comissionca_CA
project.funder.nameGeneralitat Valencianca_CA
oaire.awardNumberinfo:eu-repo/grantAgreement/EC/H2020/714876ca_CA
oaire.awardNumberPROMETEO/2018/098ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como: http://creativecommons.org/licenses/by-nc/4.0/