Mostrar el registro sencillo del ítem

dc.contributor.authorGonzales, Cedric
dc.contributor.authorGuerrero, Antonio
dc.contributor.authorBisquert, Juan
dc.date.accessioned2022-09-29T08:04:14Z
dc.date.available2022-09-29T08:04:14Z
dc.date.issued2022-08-18
dc.identifier.citationTransition from Capacitive to Inductive Hysteresis: A Neuron-Style Model to Correlate I–V Curves to Impedances of Metal Halide Perovskites Cedric Gonzales, Antonio Guerrero, and Juan Bisquert The Journal of Physical Chemistry C 2022 126 (32), 13560-13578 DOI: 10.1021/acs.jpcc.2c02729ca_CA
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/10234/199989
dc.description.abstractMetal halide perovskite (MHP) devices often show different types of hysteresis in separate voltage domains. At low voltage, the impedance response is capacitive, and the cell gives regular hysteresis. At high voltage, the hysteresis is inverted, corresponding to an inductive response that causes a negative capacitance feature. We calculate the hysteresis current due to a chemical inductor model, and we show that the current is inversely proportional to the voltage scan rate. We formulate a general dynamical model for the solar cell response in the style of neuronal models for the action potential, based on a few differential equations. The model allows us to track the transition from capacitive to inductive properties, both by impedance spectroscopy and current–voltage measurements at different voltage sweep rates. We obtain a correlation of the time constants for the capacitor and the inductor. We interpret the origin of the low-frequency features in terms of ion-controlled surface recombination. This explains the strong correlation of the low-frequency capacitance and inductor, as both originate from the same mechanism. The methodology derived in this paper provides great control over the dynamic properties of metal halide perovskite solar cells, even in cases in which there are qualitative changes of the solar cell current–voltage response over a broad voltage range.ca_CA
dc.format.extent43 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfJ. Phys. Chem. C 2022, 126, 32, 13560–13578ca_CA
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c02729ca_CA
dc.rights© 2022 American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjectelectrical propertiesca_CA
dc.subjecthysteresisca_CA
dc.subjectperovskitesca_CA
dc.subjectrecombinationca_CA
dc.subjectsolar cellsca_CA
dc.titleTransition from Capacitive to Inductive Hysteresis: A Neuron-Style Model to Correlate I–V Curves to Impedances of Metal Halide Perovskitesca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acs.jpcc.2c02729
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA
project.funder.nameMinisterio de Ciencia e Innovaciónca_CA
oaire.awardNumberPID2019-107348GB-100ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem