Mostrar el registro sencillo del ítem

dc.contributor.authorRao, Reshma R.
dc.contributor.authorCorby, Sacha
dc.contributor.authorBucci, Alberto
dc.contributor.authorGarcía-Tecedor, Miguel
dc.contributor.authorMesa, Camilo A.
dc.contributor.authorRossmeisl, Jan
dc.contributor.authorGimenez, Sixto
dc.contributor.authorLloret Fillol, Julio
dc.contributor.authorStephens, Ifan
dc.contributor.authorDurrant, James
dc.date.accessioned2022-09-26T08:01:33Z
dc.date.available2022-09-26T08:01:33Z
dc.date.issued2022-04-20
dc.identifier.citationSpectroelectrochemical Analysis of the Water Oxidation Mechanism on Doped Nickel Oxides Reshma R. Rao, Sacha Corby, Alberto Bucci, Miguel García-Tecedor, Camilo A. Mesa, Jan Rossmeisl, Sixto Giménez, Julio Lloret-Fillol, Ifan E. L. Stephens, and James R. Durrant Journal of the American Chemical Society 2022 144 (17), 7622-7633 DOI: 10.1021/jacs.1c08152ca_CA
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/10234/199781
dc.description.abstractMetal oxides and oxyhydroxides exhibit state-of-the-art activity for the oxygen evolution reaction (OER); however, their reaction mechanism, particularly the relationship between charging of the oxide and OER kinetics, remains elusive. Here, we investigate a series of Mn-, Co-, Fe-, and Zn-doped nickel oxides using operando UV–vis spectroscopy coupled with time-resolved stepped potential spectroelectrochemistry. The Ni2+/Ni3+ redox peak potential is found to shift anodically from Mn- < Co- < Fe- < Zn-doped samples, suggesting a decrease in oxygen binding energetics from Mn- to Zn-doped samples. At OER-relevant potentials, using optical absorption spectroscopy, we quantitatively detect the subsequent oxidation of these redox centers. The OER kinetics was found to have a second-order dependence on the density of these oxidized species, suggesting a chemical rate-determining step involving coupling of two oxo species. The intrinsic turnover frequency per oxidized species exhibits a volcano trend with the binding energy of oxygen on the Ni site, having a maximum activity of ∼0.05 s–1 at 300 mV overpotential for the Fe-doped sample. Consequently, we propose that for Ni centers that bind oxygen too strongly (Mn- and Co-doped oxides), OER kinetics is limited by O–O coupling and oxygen desorption, while for Ni centers that bind oxygen too weakly (Zn-doped oxides), OER kinetics is limited by the formation of oxo groups. This study not only experimentally demonstrates the relation between electroadsorption free energy and intrinsic kinetics for OER on this class of materials but also highlights the critical role of oxidized species in facilitating OER kinetics.ca_CA
dc.format.extent12 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfJ. Am. Chem. Soc. 2022, 144, 7622−7633ca_CA
dc.relation.urihttps://pubs.acs.org/doi/10.1021/jacs.1c08152ca_CA
dc.rightsCopyright © 2022 The Authors. Published by American Chemical Societyca_CA
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/ca_CA
dc.subjectelectrical propertiesca_CA
dc.subjectoxidesca_CA
dc.subjectradiologyca_CA
dc.subjectRedox reactionsca_CA
dc.subjectwater oxidationca_CA
dc.titleSpectroelectrochemical Analysis of the Water Oxidation Mechanism on Doped Nickel Oxidesca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/jacs.1c08152
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameEuropean Unionca_CA
project.funder.nameMinisterio de Ciencia, Innovación y Universidadesca_CA
project.funder.nameGeneralitat Valencianaca_CA
project.funder.nameUniversitat Jaume Ica_CA
oaire.awardNumberinfo:eu-repo/grantAgreement/EC/H2020/866402ca_CA
oaire.awardNumberENE2017-85087-C3-1- Rca_CA
oaire.awardNumberPID2020-116093RB-C41ca_CA
oaire.awardNumberAPOSTD/2021/251ca_CA
oaire.awardNumberPOSDOC/2019/20ca_CA
oaire.awardNumberUJI-B2020-50ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Copyright © 2022 The Authors. Published by American Chemical Society
Excepto si se señala otra cosa, la licencia del ítem se describe como: Copyright © 2022 The Authors. Published by American Chemical Society