Mostrar el registro sencillo del ítem

dc.contributor.authorGalmes, Miquel Angel
dc.contributor.authorNödling, Alexander
dc.contributor.authorHe, Kaining
dc.contributor.authorLuk, Louis Yu Pan
dc.contributor.authorŚwiderek, Katarzyna
dc.contributor.authorMoliner, Vicent
dc.date.accessioned2022-09-19T12:06:41Z
dc.date.available2022-09-19T12:06:41Z
dc.date.issued2022-03-15
dc.identifier.citationGALMÉS, Miquel À., et al. Computational design of an amidase by combining the best electrostatic features of two promiscuous hydrolases. Chemical Science, 2022, vol. 13, no 17, p. 4779-4787.ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/199644
dc.description.abstractWhile there has been emerging interest in designing new enzymes to solve practical challenges, computer-based options to redesign catalytically active proteins are rather limited. Here, a rational QM/MM molecular dynamics strategy based on combining the best electrostatic properties of enzymes with activity in a common reaction is presented. The computational protocol has been applied to the re-design of the protein scaffold of an existing promiscuous esterase from Bacillus subtilis Bs2 to enhance its secondary amidase activity. After the alignment of Bs2 with a non-homologous amidase Candida antarctica lipase B (CALB) within rotation quaternions, a relevant spatial aspartate residue of the latter was transferred to the former as a means to favor the electrostatics of transition state formation, where a clear separation of charges takes place. Deep computational insights, however, revealed a significant conformational change caused by the amino acid replacement, provoking a shift in the pKa of the inserted aspartate and counteracting the anticipated catalytic effect. This prediction was experimentally confirmed with a 1.3-fold increase in activity. The good agreement between theoretical and experimental results, as well as the linear correlation between the electrostatic properties and the activation energy barriers, suggest that the presented computational-based investigation can transform in an enzyme engineering approach.ca_CA
dc.format.extent10 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherThe Royal Society of Chemistryca_CA
dc.relation.isPartOfChem. Sci., 2022,13ca_CA
dc.rights© 2022 The Author(s). Published by the Royal Society of Chemistryca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/ca_CA
dc.subjectActivation energyca_CA
dc.subjectBacteriologyca_CA
dc.subjectEnzymesca_CA
dc.subjectMathematical transformationsca_CA
dc.subjectMolecular dynamicsca_CA
dc.subjectReaction kineticsca_CA
dc.subjectScaffoldsca_CA
dc.subjectAmidaseca_CA
dc.titleComputational design of an amidase by combining the best electrostatic features of two promiscuous hydrolasesca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doiDOI https://doi.org/10.1039/D2SC00778A
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Ciencia, Innovación y Universidades (Spain)ca_CA
project.funder.nameGeneralitat Valencianaca_CA
project.funder.nameUniversitat Jaume Ica_CA
project.funder.nameCardiff Universityca_CA
project.funder.nameBBSRCca_CA
project.funder.nameLeverhulme Trustca_CA
project.funder.nameRoyal Society of Chemistryca_CA
oaire.awardNumberPGC2018-094852-B-C21ca_CA
oaire.awardNumberPID2019-107098RJ-I00ca_CA
oaire.awardNumberAICO/2019/195ca_CA
oaire.awardNumberSEJI/2020/007ca_CA
oaire.awardNumberUJI-A2019-04ca_CA
oaire.awardNumberUJI-B2020-03ca_CA
oaire.awardNumberBB/T015799/1ca_CA
oaire.awardNumberRPG-2017-195ca_CA
oaire.awardNumberRG170187ca_CA
oaire.awardNumberRYC2020-030596-Ica_CA
oaire.awardNumberPREDOC/2017/23ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 The Author(s). Published by the Royal Society of Chemistry
Excepto si se señala otra cosa, la licencia del ítem se describe como: © 2022 The Author(s). Published by the Royal Society of Chemistry