Mostrar el registro sencillo del ítem

dc.contributor.authorBinSaeedan, Norah M.
dc.contributor.authorArunachalam, Prabhakarn
dc.contributor.authorAl-Mayouf, Abdullah
dc.contributor.authorNaji Shaddad, Maged
dc.contributor.authorAmer, Mabrook S.
dc.contributor.authorBeagan, Abeer
dc.contributor.authorFabregat-Santiago, Francisco
dc.contributor.authorBisquert, Juan
dc.date.accessioned2022-06-10T06:58:28Z
dc.date.available2022-06-10T06:58:28Z
dc.date.issued2022-05-15
dc.identifier.citationBinSaeedan NM,Arunachalam P, Al-Mayouf AM, et al. Enhancedelectrochemical hydrogen peroxide productionfrom surface state modified mesoporous tin oxidecatalysts.Int J Energy Res. 2022;46(7):9150-9165.doi:10.1002/er.7792ca_CA
dc.identifier.issn0363-907X
dc.identifier.issn1099-114X
dc.identifier.urihttp://hdl.handle.net/10234/197981
dc.description.abstractElectrochemical hydrogen peroxide (H2O2) production via the two-electronoxygen reduction reaction (ORR) has received much consideration as a substi-tute to the well-known industrial anthraquinone method. The present chal-lenge in this area is developing appropriate cost-efficient materials withexcellent electrocatalytic properties, durability, and product selectivity. Thisstudy examined electrocatalytic performance and selectivity toward H2O2pro-duction of mesoporous SnO2(meso-SnO2) electrodes prepared using a tunablehydrothermal process. After evaluating the effects of different NaCl concentra-tions and annealing conditions in the hydrothermal method, an electrode wasdeveloped with a significantly improved H2O2production rate than the pris-tine material. Vacuum annealing led to materials with more surface defects.Meso-SnO2annealed under vacuum exhibits distinctive electrochemical prop-erties of two well-separated 2e O2reduction peaks to produce H2O2as themain product compared tomeso-SnO2annealed in air. Most importantly, theintroduction of surface oxygen vacancies into themeso-SnO2crystal structurewas determined to be a prominent approach to enhance its ORR performancein producing H2O2, showing great selectivity of above 85% at an onset potentialof 0.6 VRHE. The vacancy-richmeso-SnO2reveals enhanced electrocatalyticperformance with ORR peak potential to be 0.6 VRHE,and the number of elec-tron transfer numbers is 2.5, but greater durability in alkaline solutions. Thus,this work presents an innovative route for designing, synthesizing, and mecha-nistic examining enhanced SnO2-based catalytic materials for H2O2production.ca_CA
dc.format.extent16 p.ca_CA
dc.language.isoengca_CA
dc.publisherWileyca_CA
dc.relation.isPartOfInt J Energy Res.2022;46:9150–9165ca_CA
dc.relation.uriAll data generated or analyzed during this study areincluded in this published article (and its supplementaryinformation files)ca_CA
dc.rights© 2022 John Wiley & Sons Ltd.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjecthydrogen peroxideca_CA
dc.subjectmesoporousca_CA
dc.subjectoxygen reductionca_CA
dc.subjecttin oxideca_CA
dc.subjectvacuum annealingca_CA
dc.titleEnhanced electrochemical hydrogen peroxide productionfrom surface state modified mesoporous tin oxide catalystsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1002/er.7792
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameKingSaud Universityca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem