Mostrar el registro sencillo del ítem

dc.contributor.authorDabard, Corentin
dc.contributor.authorPlanelles, Josep
dc.contributor.authorPo, Hong
dc.contributor.authorIzquierdo, Eva
dc.contributor.authorMakke, Lina
dc.contributor.authorGréboval, Charlie
dc.contributor.authorMoghaddam, Nicolas
dc.contributor.authorKhalili Lazarjani, Adrien
dc.contributor.authorDang Huu, Tung
dc.contributor.authorChu, Audrey
dc.contributor.authorPierini, Stefano
dc.contributor.authorAbadie, Claire
dc.contributor.authorCavallo, Mariarosa
dc.contributor.authorBossavit, Erwan
dc.contributor.authorXu, XiangXiang Zhen
dc.contributor.authorHollander, Philippe
dc.contributor.authorSilly, Mathieu
dc.contributor.authorLhuillier, Emmanuel
dc.contributor.authorClimente, Juan I.
dc.contributor.authorIthurria, Sandrine
dc.date.accessioned2022-05-31T10:05:11Z
dc.date.available2022-05-31T10:05:11Z
dc.date.issued2021-11-29
dc.identifier.citationCorentin Dabard, Josep Planelles, Hong Po, Eva Izquierdo, Lina Makke, et al.. Optimized cation exchange for mercury chalcogenides 2D nanoplatelets and its application for alloys. Chemistry of Materials, American Chemical Society, 2021, 10.1021/acs.chemmater.1c02951ca_CA
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.urihttp://hdl.handle.net/10234/197874
dc.description.abstractII–VI two-dimensional (2D) nanoplatelets (NPLs) exhibit the narrowest optical features among nanocrystals (NCs). This property remains true for Hg-based NPLs, despite a cation exchange procedure to obtain them from Cd-based NPLs, which leads to structural defects (poorly defined edges and voids) inducing inhomogeneous broadening. Here, we propose an optimized procedure for which a solvent, surface chemistry, and reaction conditions are rationally considered. The procedure is applied to the growth of alloyed HgSe1–xTex NPLs with various compositions. We report a bright photoluminescence for all compositions. Structural properties being now well defined, it is possible to study the electronic properties of these objects. To do so, we combine k·p modeling of quantum-confined structures with X-ray photoemission. In particular, we clarify the origin of the similarity between CdTe and HgTe NPLs absorption spectra despite their vastly differing bulk band structures. Finally, static- and time-resolved photoemission unveil a crossover from n- to p-type behavior in HgSe1–xTex NPLs while increasing the Te content.ca_CA
dc.format.extent10 p.ca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfChem. Mater. 2021, 33, 23, 9252-9261ca_CA
dc.rightsCopyright © American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/CNE/1.0/ca_CA
dc.subjectcolloidal quantum-wellsca_CA
dc.subjectCDSE nanoplateletsca_CA
dc.subjectPBS nanoplateletsca_CA
dc.subjectband-structureca_CA
dc.subjectsemiconductorsca_CA
dc.subjectspectroscopyca_CA
dc.subjectbarrierca_CA
dc.subjectnarrowca_CA
dc.subjectcoreca_CA
dc.titleOptimized Cation Exchange for Mercury Chalcogenide 2D Nanoplatelets and Its Application for Alloysca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acs.chemmater.1c02951
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/full/10.1021/acs.chemmater.1c02951ca_CA
dc.description.sponsorshipThe project was supported by ERC starting grants Ne2DeM (grant no 853049) and blackQD (grant no 756225). The authors acknowledge the use of clean-room facilities at the “Centrale de Proximité Paris-Centre”. This work was supported by Region Ile-de-France in the framework of DIM Nano-K (grant dopQD). This work was also supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02 and, more specifically, within the framework of the Cluster of Excellence MATISSE and by grants IPER-Nano2 (ANR-18CE30-0023-01), Copin (ANR-19-CE24-0022), Frontal (ANR-19-CE09-0017), Graskop (ANR-19-CE09-0026), NITQuantum (ANR-20-ASTR-0008-01), Bright (ANR-21-CE24-0012-02), and MixDferro (ANR-21-CE09-0029). A.C. thanks Agence Innovation Defense for Ph.D. funding. J.P. and J.I.C. acknowledge support from Prometeo Grant Q-Devices (Prometeo/2018/098).
dc.type.versioninfo:eu-repo/semantics/submittedVersionca_CA
project.funder.nameEuropean Commissionca_CA
project.funder.nameRegion Ile-de-Franceca_CA
project.funder.nameFrench National Research Agency (ANR)ca_CA
project.funder.nameIPERNano2ca_CA
project.funder.nameCopinca_CA
project.funder.nameFrontalca_CA
project.funder.nameGraskopca_CA
project.funder.nameNITQuantumca_CA
project.funder.nameBrightca_CA
project.funder.nameMixDferroca_CA
project.funder.nameGeneralitat Valencianaca_CA
oaire.awardNumber853049ca_CA
oaire.awardNumber756225ca_CA
oaire.awardNumberdopQDca_CA
oaire.awardNumberANR11-IDEX-0004-02ca_CA
oaire.awardNumberANR-18CE30-0023-01ca_CA
oaire.awardNumberANR-19-CE24-0022ca_CA
oaire.awardNumberANR-19-CE09-0017ca_CA
oaire.awardNumberANR-19-CE09-0026ca_CA
oaire.awardNumberANR-20-ASTR-0008-01ca_CA
oaire.awardNumberANR-21-CE24-0012-02ca_CA
oaire.awardNumberANR-21-CE09-0029ca_CA
oaire.awardNumberPrometeo/2018/098ca_CA


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem