Mostrar el registro sencillo del ítem

dc.contributor.authorBisquert, Juan
dc.contributor.authorGuerrero, Antonio
dc.date.accessioned2022-05-19T07:43:29Z
dc.date.available2022-05-19T07:43:29Z
dc.date.issued2022-03-22
dc.identifier.citationJuan Bisquert and Antonio Guerrero Journal of the American Chemical Society 2022 144 (13), 5996-6009 DOI: 10.1021/jacs.2c00777ca_CA
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/10234/197713
dc.description.abstractA multitude of chemical, biological, and material systems present an inductive behavior that is not electromagnetic in origin. Here, it is termed a chemical inductor. We show that the structure of the chemical inductor consists of a two-dimensional system that couples a fast conduction mode and a slowing down element. Therefore, it is generally defined in dynamical terms rather than by a specific physicochemical mechanism. The chemical inductor produces many familiar features in electrochemical reactions, including catalytic, electrodeposition, and corrosion reactions in batteries and fuel cells, and in solid-state semiconductor devices such as solar cells, organic light-emitting diodes, and memristors. It generates the widespread phenomenon of negative capacitance, it causes negative spikes in voltage transient measurements, and it creates inverted hysteresis effects in current–voltage curves and cyclic voltammetry. Furthermore, it determines stability, bifurcations, and chaotic properties associated to self-sustained oscillations in biological neurons and electrochemical systems. As these properties emerge in different types of measurement techniques such as impedance spectroscopy and time-transient decays, the chemical inductor becomes a useful framework for the interpretation of the electrical, optoelectronic, and electrochemical responses in a wide variety of systems. In the paper, we describe the general dynamical structure of the chemical inductor and we comment on a broad range of examples from different research areas.ca_CA
dc.description.sponsorShipFunding for open access charge: CRUE-Universitat Jaume I
dc.format.extent14 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfJournal of the American Chemical Society 2022 144 (13), 5996-6009ca_CA
dc.rights© 2022 The Authors. Published by American Chemical Societyca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/ca_CA
dc.subjectsolar cellsca_CA
dc.subjectoscillationca_CA
dc.subjectcircuitsca_CA
dc.subjectelementsca_CA
dc.subjectelectrical propertiesca_CA
dc.titleChemical Inductorca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/jacs.2c00777
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Ciencia e Innovaciónca_CA
project.funder.nameUniversitat Jaume Ica_CA
oaire.awardNumberPID2019- 107348GB-100ca_CA
oaire.awardNumberUJI-B2020-49ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 The Authors. Published by American Chemical Society
Excepto si se señala otra cosa, la licencia del ítem se describe como: © 2022 The Authors. Published by American Chemical Society