Mostrar el registro sencillo del ítem

dc.contributor.authorGalmés, Miquel À
dc.contributor.authorŚwiderek, Katarzyna
dc.contributor.authorMoliner, Vicent
dc.date.accessioned2021-10-08T06:56:40Z
dc.date.available2021-10-08T06:56:40Z
dc.date.issued2021-07-26
dc.identifier.citationMiquel A. Galmés, Katarzyna Świderek, and Vicent Moliner Journal of Chemical Information and Modeling 2021 61 (7), 3604-3614 DOI: 10.1021/acs.jcim.1c00425ca_CA
dc.identifier.issn1549-9596
dc.identifier.issn1549-960X
dc.identifier.urihttp://hdl.handle.net/10234/194941
dc.description.abstractEnvironmentally friendly processes are nowadays a trending topic to get highly desired chemical compounds and, in this sense, the use of enzyme-catalyzed routes is becoming a promising alternative to traditional synthetic methods. In the present paper, a hybrid quantum mechanics/molecular mechanics (QM/MM) computational study on the epoxidation of alkenes catalyzed by the Ser105Ala variant of the promiscuous Candida antarctica lipase B (CALB) is presented in an attempt to search for alternative paths to get useful intermediates in industries. The catalyzed reaction, described at the atomistic level with a model of the full solvated in a box of water molecules, is compared with the alternative epoxidation of alkenes by peroxy acids in chloroform. Free-energy profiles obtained at the density functional theory (DFT)/MM level show how Ser105Ala CALB is capable of epoxide short alkenes in a two-step process with free-energy barriers, in agreement with available experimental data, that are significantly lower than those of the single-step reaction in solution. The possible (R)-enantioselectivity dictated by the binding step, explored by means of alchemical QM/MM free-energy perturbation (FEP) methods, and the preference for the (S)-enantiomer derived from the free-energy landscape of the chemical steps would cancel out, thus predicting the lack of enantioselectivity experimentally observed. In general, our results provide general information on the molecular mechanism employed by a highly promiscuous enzyme, with potential applications in biotechnology.ca_CA
dc.format.extent38 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfJ. Chem. Inf. Model. 2021, 61, 3604−3614ca_CA
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acs.jcim.1c00425ca_CA
dc.rights© 2021 American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjecthydrocarbonsca_CA
dc.subjectoxidesca_CA
dc.subjectpeptides and proteinsca_CA
dc.subjectorganic reactionsca_CA
dc.subjectchemical reactionsca_CA
dc.titleComputational Studies Suggest Promiscuous Candida antarctica Lipase B as an Environmentally Friendly Alternative for the Production of Epoxidesca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acs.jcim.1c00425
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/journal/jcisd8ca_CA
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA
project.funder.nameMinisterio de Ciencia e Innovaciónca_CA
project.funder.nameGeneralitat Valencianaca_CA
project.funder.nameUniversitat Jaume Ica_CA
oaire.awardNumberPGC2018-094852-B-C21ca_CA
oaire.awardNumberPID2019-107098RJ-I00ca_CA
oaire.awardNumberAICO/2019/195ca_CA
oaire.awardNumberSEJI/2020/007ca_CA
oaire.awardNumberUJI-B2017-31ca_CA
oaire.awardNumberUJI-A2019-04ca_CA
oaire.awardNumberPREDOC/2017/23ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem