Show simple item record

dc.contributor.authorGalvín, Pedro
dc.contributor.authorRomero Ordóñez, Antonio
dc.contributor.authorMoliner, Emma
dc.contributor.authorConnolly, David P.
dc.contributor.authorMartínez-Rodrigo, María D.
dc.date.accessioned2021-09-27T07:29:37Z
dc.date.available2021-09-27T07:29:37Z
dc.date.issued2021
dc.identifier.citationGalvín, P., Romero, A., Moliner, E. et al. Fast simulation of railway bridge dynamics accounting for soil–structure interaction. Bull Earthquake Eng (2021). https://doi.org/10.1007/s10518-021-01191-0ca_CA
dc.identifier.issn1570-761X
dc.identifier.issn1573-1456
dc.identifier.urihttp://hdl.handle.net/10234/194823
dc.description.abstractA novel numerical methodology is presented to solve the dynamic response of railway bridges under the passage of running trains, considering soil–structure interaction. It is advantageous compared to alternative approaches because it permits, (i) consideration of complex geometries for the bridge and foundations, (ii) simulation of stratified soils, and, (iii) solving the train-bridge dynamic problem at minimal computational cost. The approach uses sub-structuring to split the problem into two coupled interaction problems: the soil–foundation, and the soil–foundation–bridge systems. In the former, the foundation and surrounding soil are discretized with Finite Elements (FE), and padded with Perfectly Match Layers to avoid boundary reflections. Considering this domain, the equivalent frequency dependent dynamic stiffness and damping characteristics of the soil–foundation system are computed. For the second sub-system, the dynamic response of the structure under railway traffic is computed using a FE model with spring and dashpot elements at the support locations, which have the equivalent properties determined using the first sub-system. This soil–foundation–bridge model is solved using complex modal superposition, considering the equivalent dynamic stiffness and damping of the soil–foundation corresponding to each natural frequency. The proposed approach is then validated using both experimental measurements and an alternative Finite Element–Boundary Element (FE–BE) methodology. A strong match is found and the results discussed.ca_CA
dc.format.extent19 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherSpringerca_CA
dc.relation.isPartOfBulletin of Earthquake Engineering, August 2021ca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/ca_CA
dc.subjectrailway bridge dynamicsca_CA
dc.subjectrailway trafcca_CA
dc.subjectbridge soil–structure interactionca_CA
dc.subjectrailroad numerical methodsca_CA
dc.subjectnon-proportional dampingca_CA
dc.subjectSSI perfectly matched layersca_CA
dc.subjectrailway bridge resonanceca_CA
dc.titleFast simulation of railway bridge dynamics accounting for soil–structure interactionca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1007/s10518-021-01191-0
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://link.springer.com/article/10.1007/s10518-021-01191-0ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Ciencia, Innovación y Universidadesca_CA
project.funder.nameUniversidad de Sevillaca_CA
project.funder.nameGeneralitat Valencianaca_CA
project.funder.nameCentro Informático Científico de Andalucía (CICA)ca_CA
oaire.awardNumberPID2019-109622RBca_CA
oaire.awardNumberUS-126491ca_CA
oaire.awardNumberAICO2019/175ca_CA


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-sa/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-sa/4.0/