Mostrar el registro sencillo del ítem

dc.contributor.authorMacias-Pinilla, David F.
dc.contributor.authorEcheverría-Arrondo, Carlos
dc.contributor.authorGualdrón Reyes, Andrés Fabián
dc.contributor.authorAgouram, Said
dc.contributor.authorMuñoz-Sanjosé, Vicente
dc.contributor.authorPlanelles, Josep
dc.contributor.authorMora-Sero, Ivan
dc.contributor.authorClimente, Juan I.
dc.date.accessioned2021-01-13T08:00:22Z
dc.date.available2021-01-13T08:00:22Z
dc.date.issued2021-01-12
dc.identifier.citationDavid F. Macias-Pinilla, Carlos Echeverría-Arrondo, Andrés Fabián Gualdrón Reyes, Saïd Agouram, Vicente Muñoz-Sanjosé, Josep Planelles, Iván Mora-Seró, and Juan I. Climente. Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material. Chemistry of Materials 2021 33 (1), 420-429 DOI: 10.1021/acs.chemmater.0c04281ca_CA
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.urihttp://hdl.handle.net/10234/191189
dc.description.abstractPbS quantum dots and nanoplatelets (NPLs) are of enormous interest in the development of optoelectronic devices. However, some important aspects of their nature remain unclear. Recent studies have revealed that colloidal PbS NPLs may depart from the rock-salt crystal structure of bulk and form an orthorhombic (Pnma) modification instead. To gain insight into the implications of such a change over the optoelectronic properties, we have synthesized orthorhombic PbS NPLs and determined the lattice parameters by means of selected area electron diffraction measurements. We have then calculated the associated band structure using density functional theory with Perdew–Burke–Ernzerhof functional for solids and with the GW approximation, including spin–orbit interactions. An indirect band gap is found, which may explain the weak luminescence reported in experiments. We derive effective masses for conduction and valence bands and deduce that quantum confinement along the a crystallographic axis (short axis of the NPL) reinforces the indirect band gap but that along b and c axes favors a direct gap instead. Calculations for colloidal nanoplatelets of 1.8 nm thickness, carried out with k·p theory, show that excitonic effects are strong, with binding energies of about 150 meV.ca_CA
dc.format.extent10 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfChemistry of Materials 2021, vol. 33, no 1ca_CA
dc.rightsCopyright © American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectexcitonsca_CA
dc.subjectenergyca_CA
dc.subjectquantum confinementca_CA
dc.subjectbinding energyca_CA
dc.subjectelectrical conductivityca_CA
dc.titleMorphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Materialca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acs.chemmater.0c04281
dc.relation.projectIDEuropean Research Council (ERC) via Consolidator Grant (724424-No-LIMIT), Generalitat Valenciana via Prometeo Grant Q-Devices (Prometeo/2018/098), EU (FEDER), and MINECO under project TEC2017-85912-C2-2 is gratefully acknowledged. J.P. and J.I.C. acknowledge support from MICINN project CTQ2017-83781-P
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c04281ca_CA
dc.date.embargoEndDate2022-01-12
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem