Mostrar el registro sencillo del ítem

dc.contributor.authorSelim, Shababa
dc.contributor.authorPastor , Ernest
dc.contributor.authorGarcía-Tecedor, Miguel
dc.contributor.authorMorris, Madeleine
dc.contributor.authorFrancàs Forcada, Laia
dc.contributor.authorSachs, Michael
dc.contributor.authorMoss, Benjamin
dc.contributor.authorCorby, Sacha
dc.contributor.authorMesa, Camilo A.
dc.contributor.authorGimenez, Sixto
dc.contributor.authorKafizas, Andreas
dc.contributor.authorBakulin, Artem
dc.contributor.authorDurrant, James
dc.date.accessioned2020-12-02T09:52:28Z
dc.date.available2020-12-02T09:52:28Z
dc.date.issued2019-11-27
dc.identifier.citationSELIM, Shababa, et al. Impact of oxygen vacancy occupancy on charge carrier dynamics in BiVO4 photoanodes. Journal of the American Chemical Society, 2019, vol. 141, no 47, p. 18791-18798.ca_CA
dc.identifier.issn0002-7863
dc.identifier.urihttp://hdl.handle.net/10234/190658
dc.description.abstractOxygen vacancies are ubiquitous in metal oxides and critical to performance, yet the impact of these states upon charge carrier dynamics important for photoelectrochemical and photocatalytic applications remains contentious and poorly understood. A key challenge is the unambiguous identification of spectroscopic fingerprints which can be used to track their function. Herein, we employ five complementary techniques to modulate the electronic occupancy of states associated with oxygen vacancies in situ in BiVO4 photoanodes, allowing us to identify a spectral signature for the ionization of these states. We obtain an activation energy of ∼0.2 eV for this ionization process, with thermally activated electron detrapping from these states determining the kinetics of electron extraction, consistent with improved photoelectrochemical performance at higher temperatures. Bulk, un-ionized states, however, function as deep hole traps, with such trapped holes energetically unable to drive water oxidation. These observations help address recent controversies in the literature regarding oxygen vacancy function, providing new insights into their impact upon photoelectrochemical performance.ca_CA
dc.format.extent20 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfJ. Am. Chem. Soc. 2019, 141, 47, 18791–18798ca_CA
dc.rightsCopyright © 2019 American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectphotonicsca_CA
dc.subjectthermodynamic modelingca_CA
dc.subjectdefects in solidsca_CA
dc.subjectkineticsca_CA
dc.subjectextractionca_CA
dc.titleImpact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO4 Photoanodesca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/jacs.9b09056
dc.relation.projectID(project Intersolar 291482), (RSG\R1\180434), (658271), (Project ENE2017-85087-C3-1-R), (Grant Agreement No. 639750)ca_CA
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/abs/10.1021/jacs.9b09056ca_CA
dc.date.embargoEndDate2020-11-27
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem