Mostrar el registro sencillo del ítem

dc.contributor.authorTena Solsona, Marta
dc.contributor.authorMarson, Domenico
dc.contributor.authorRodrigo, Ana C.
dc.contributor.authorBromfield, Stephen M.
dc.contributor.authorEscuder, Beatriu
dc.contributor.authorMiravet, Juan
dc.contributor.authorApostolova, Nadezda
dc.contributor.authorLaurini, Erik
dc.contributor.authorPricl, Sabrina
dc.date.accessioned2020-01-22T08:11:26Z
dc.date.available2020-01-22T08:11:26Z
dc.date.issued2019
dc.identifier.citationTena-Solsona, M., Marson, D., Rodrigo, A. C, Bromfield, S. M, Escuder, B., Miravet, J. F, Apostolova, N., Laurini, E., Pricl, S., & Smith, D. K. (2019). Self-assembled multivalent (SAMul) ligand systems with enhanced stability in the presence of human serum. Biomaterials science, 7, 3812-3820. doi: 10.1039/c9bm00745hca_CA
dc.identifier.issn2047-4830
dc.identifier.urihttp://hdl.handle.net/10234/185908
dc.description.abstractSelf-assembled cationic micelles are an attractive platform for binding biologically-relevant polyanions such as heparin. This has potential applications in coagulation control, where a synthetic heparin rescue agent could be a useful replacement for protamine, which is in current clinical use. However, micelles can have low stability in human serum and unacceptable toxicity profiles. This paper reports the optimisation of self-assembled multivalent (SAMul) arrays of amphiphilic ligands to bind heparin in competitive conditions. Specifically, modification of the hydrophobic unit kinetically stabilises the self-assembled nanostructures, preventing loss of binding ability in the presence of human serum – cholesterol hydrophobic units significantly outperform systems with a simple aliphatic chain. It is demonstrated that serum albumin disrupts the binding thermodynamics of the latter system. Molecular simulation shows aliphatic lipids can more easily be removed from the self-assembled nanostructures than the cholesterol analogues. This agrees with the experimental observation that the cholesterol-based systems undergo slower disassembly and subsequent degradation via ester hydrolysis. Furthermore, by stabilising the SAMul nanostructures, toxicity towards human cells is decreased and biocompatibility enhanced, with markedly improved survival of human hepatoblastoma cells in an MTT assay.ca_CA
dc.format.extent9 p.ca_CA
dc.language.isoengca_CA
dc.publisherRoyal Society of Chemistryca_CA
dc.relation.isPartOfBiomaterials science, 2019, vol. 7, no 9ca_CA
dc.rights© The Royal Society of Chemistryca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectanionsca_CA
dc.subjectbinding capacityca_CA
dc.subjectbiocompatibilityca_CA
dc.subjectblood serumca_CA
dc.subjectcholesterolca_CA
dc.subjectcoagulationca_CA
dc.subjectheparinca_CA
dc.subjecthuman cell linesca_CA
dc.subjecthydrolysisca_CA
dc.subjecthydrophobicityca_CA
dc.subjectligandsca_CA
dc.subjectmicellesca_CA
dc.subjectmolecular dynamicsca_CA
dc.subjectnanomaterialsca_CA
dc.subjectserum albuminca_CA
dc.subjectthermodynamicsca_CA
dc.subjecttoxicityca_CA
dc.subjecttoxicity testingca_CA
dc.titleSelf-assembled multivalent (SAMul) ligand systems with enhanced stability in the presence of human serumca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1039/C9BM00745H
dc.relation.projectIDMinistry of Education, Culture and Sport of Spain; European Union (EU): 628757; Associazione Italiana per la Ricerca sul Cancro (AIRC): IG17413; COST Action - COST (European Cooperation in Science and Technology): CA 17140ca_CA
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://pubs.rsc.org/en/content/articlelanding/2019/BM/C9BM00745H#!divAbstractca_CA
dc.type.versioninfo:eu-repo/semantics/submittedVersionca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem