Mostrar el registro sencillo del ítem

dc.contributor.authorValenti, Marco
dc.contributor.authorPrasad, Nitin P.
dc.contributor.authorKas, Recep
dc.contributor.authorBohra, Divya
dc.contributor.authorMa, Ming
dc.contributor.authorBalasubramanian, Vignesh
dc.contributor.authorChu, Liangyong
dc.contributor.authorGimenez, Sixto
dc.contributor.authorBisquert, Juan
dc.contributor.authorDam, Bernard
dc.contributor.authorSmith, Wilson A.
dc.date.accessioned2019-11-13T08:31:27Z
dc.date.available2019-11-13T08:31:27Z
dc.date.issued2019-03-11
dc.identifier.citationVALENTI, Marco, et al. Suppressing H2 Evolution and Promoting Selective CO2 Electroreduction to CO at Low Overpotentials by Alloying Au with Pd. ACS Catalysis, 2019, vol. 9, no 4, p. 3527-3536ca_CA
dc.identifier.issn2155-5435
dc.identifier.urihttp://hdl.handle.net/10234/184903
dc.description.abstractCO2 electroreduction is a promising technology to produce chemicals and fuels from renewable resources. Polycrystalline and nanostructured metals have been tested extensively while less effort has been spent on understanding the performance of bimetallic alloys. In this work, we study compositionally variant, smooth Au–Pd thin film alloys to discard any morphological or mesoscopic effect on the electrocatalytic performance. We find that the onset potential of CO formation exhibits a strong dependence on the Pd content of the alloys. Strikingly, palladium, a hydrogen evolution catalyst with reasonable exchange current density, suppresses hydrogen evolution when alloyed with gold in the presence of CO2. Cyclic voltammetry, in situ surface enhanced infrared absorption spectroscopy, and potential-dependent online product analysis strongly suggest that by alloying Au with Pd a significant increase in the surface coverage of adsorbed CO occurs with increasing Pd content at low overpotentials (e.g., approximately −0.35 V vs RHE). Such an increase in CO coverage suppresses H2 evolution due to the lack of vacant active sites. Moreover, the overall increase in the binding energy with the CO2 intermediates gained with the addition of Pd increases the CO production at low overpotentials, where polycrystalline Au suffers from poor CO2 adsorption and poor selectivity for CO production. These results show that promising CO2 reduction electrode materials (e.g., Au) can be alloyed not only to tune the catalyst’s activity but also to deliberately decrease the availability of surface sites for competitive H2 evolution.ca_CA
dc.format.extent10 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.relation.isPartOfACS Catalysis, 2019, vol. 9, no 4ca_CA
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectelectrochemical CO2 reductionca_CA
dc.subjectin situ spectroelectrochemistryca_CA
dc.subjecthydrogen suppressionca_CA
dc.subjectmetallic alloy thin filmsca_CA
dc.subjectkinetic modelingca_CA
dc.titleSuppressing H2 Evolution and Promoting Selective CO2 Electroreduction to CO at Low Overpotentials by Alloying Au with Pdca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acscatal.8b04604
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/abs/10.1021/acscatal.8b04604ca_CA
dc.contributor.funderFinancial support from the VIDI project (granted to W.A.S.) by NWO is gratefully acknowledged.ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional