Mostra el registre parcial de l'element

dc.contributor.authorGallardo Jaramago, Jose Antonio
dc.contributor.authorPaoletti, Mercedes Eugenia
dc.contributor.authorHaut, Juan M.
dc.contributor.authorFernandez-Beltran, Ruben
dc.date.accessioned2019-11-08T07:35:06Z
dc.date.available2019-11-08T07:35:06Z
dc.date.issued2019-08-22
dc.identifier.citationJARAMAGO, José Antonio Gallardo, et al. GPU Parallel Implementation of Dual-Depth Sparse Probabilistic Latent Semantic Analysis for Hyperspectral Unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12.9: 3156-3167.ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/184827
dc.description.abstractHyperspectral unmixing (HU) is an important task for remotely sensed hyperspectral (HS) data exploitation. It comprises the identification of pure spectral signatures (endmembers) and their corresponding fractional abundances in each pixel of the HS data cube. Several methods have been developed for (semi-) supervised and automatic identification of endmembers and abundances. Recently, the statistical dual-depth sparse probabilistic latent semantic analysis (DEpLSA) method has been developed to tackle the HU problem as a latent topic-based approach in which both endmembers and abundances can be simultaneously estimated according to the semantics encapsulated by the latent topic space. However, statistical models usually lead to computationally demanding algorithms and the computational time of the DEpLSA is often too high for practical use, in particular, when the dimensionality of the HS data cube is large. In order to mitigate this limitation, this article resorts to graphical processing units (GPUs) to provide a new parallel version of the DEpLSA, developed using the NVidia compute device unified architecture. Our experimental results, conducted using four well-known HS datasets and two different GPU architectures (GTX 1080 and Tesla P100), show that our parallel versions of the DEpLSA and the traditional pLSA approach can provide accurate HU results fast enough for practical use, accelerating the corresponding serial versions in at least 30x in the GTX 1080 and up to 147x in the Tesla P100 GPU, which are quite significant acceleration factors that increase with the image size, thus allowing for the possibility of the fast processing of massive HS data repositories.ca_CA
dc.format.extent18 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherIEEEca_CA
dc.rights© Copyright 2019 IEEE - All rights reserved.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectGraphics Processing Unit (GPU)ca_CA
dc.subjectHyperspectral Unmixing (HU)ca_CA
dc.subjectprobabilistic generative modelsca_CA
dc.subjectprobabilistic Latent Semantic Analysis (pLSA)ca_CA
dc.subjectDual-Depth Sparse pLSA (DEpLSA)ca_CA
dc.titleGPU Parallel Implementation of Dual-Depth Sparse Probabilistic Latent Semantic Analysis for Hyperspectral Unmixingca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1109/JSTARS.2019.2934011
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://ieeexplore.ieee.org/abstract/document/8809876
dc.type.versioninfo:eu-repo/semantics/submittedVersionca_CA


Fitxers en aquest element

Thumbnail

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element