Mostrar el registro sencillo del ítem

dc.contributor.authorAnzt, Hartwig
dc.contributor.authorDongarra, Jack
dc.contributor.authorFlegar, Goran
dc.contributor.authorHigham, Nicholas J.
dc.contributor.authorQuintana-Orti, Enrique S.
dc.date.accessioned2019-06-21T09:16:29Z
dc.date.available2019-06-21T09:16:29Z
dc.date.issued2019-03-25
dc.identifier.citationANZT, Hartwig, et al. Adaptive precision in block‐Jacobi preconditioning for iterative sparse linear system solvers. Concurrency and Computation: Practice and Experience, 2019, vol. 31, no 6, p. e4460ca_CA
dc.identifier.issn1532-0626
dc.identifier.issn1532-0634
dc.identifier.urihttp://hdl.handle.net/10234/182895
dc.descriptionThis is the pre-peer reviewed version of the following article: Adaptive precision in block‐Jacobi preconditioning for iterative sparse linear system solvers, which has been published in final form at https://doi.org/10.1002/cpe.4460. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
dc.description.abstractWe propose an adaptive scheme to reduce communication overhead caused by data movement by selectively storing the diagonal blocks of a block‐Jacobi preconditioner in different precision formats (half, single, or double). This specialized preconditioner can then be combined with any Krylov subspace method for the solution of sparse linear systems to perform all arithmetic in double precision. We assess the effects of the adaptive precision preconditioner on the iteration count and data transfer cost of a preconditioned conjugate gradient solver. A preconditioned conjugate gradient method is, in general, a memory bandwidth‐bound algorithm, and therefore its execution time and energy consumption are largely dominated by the costs of accessing the problem's data in memory. Given this observation, we propose a model that quantifies the time and energy savings of our approach based on the assumption that these two costs depend linearly on the bit length of a floating point number. Furthermore, we use a number of test problems from the SuiteSparse matrix collection to estimate the potential benefits of the adaptive block‐Jacobi preconditioning scheme.ca_CA
dc.format.extent12 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherWileyca_CA
dc.relation.isPartOfConcurrency and Computation: Practice and Experience, 2019, vol. 31, no 6ca_CA
dc.rightsCopyright © John Wiley & Sons, Inc.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectadaptive precisionca_CA
dc.subjectblock‐Jacobi preconditioningca_CA
dc.subjectcommunication reductionca_CA
dc.subjectenergy efficiencyca_CA
dc.subjectKrylov subspace methodsca_CA
dc.subjectsparse linear systemsca_CA
dc.titleAdaptive precision in block‐Jacobi preconditioning for iterative sparse linear system solversca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1002/cpe.4460
dc.relation.projectIDImpuls und Vernetzungsfond of the Helmholtz Association. Grant Number: VH‐NG‐1241; MINECO and FEDER. Grant Number: TIN2014‐53495‐R; H2020 EU FETHPC Project. Grant Number: 732631; MathWorks; Engineering and Physical Sciences Research Council. Grant Number: EP/P020720/1; Exascale Computing Project. Grant Number: 17-SC-20-SCca_CA
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4460ca_CA
dc.type.versioninfo:eu-repo/semantics/submittedVersionca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem